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1 Continuous-Time Markov Chains

1.1 The Markov Property

A stochastic process, or sometimes just a process, is a sequence of random variables X = (Xn)n∈N0
.

Definition 1.1 (Markov Chain)

A stochastic process is said to have the Markov property if the future and the past are
independent, given the present. That is, for any k > n, the conditional distribution of Xk

given X1 . . . Xn (the future given the past and present) is the same as that given Xn alone
(only the present).

The process X is called a discrete-time Markov Chain with state space I if:

∀x0, x1, . . . xn ∈ I, P[Xn = xn | Xn−1 = xn−1, . . . , X0 = x0] = P[Xn = xn | Xn−1 = xn−1].

If these probabilities are independent of n, then the chain is called time-homogeneous. We
then write P = (Pxy)x,y∈I for the transition matrix with Pxy = P[Xn = y | Xn−1 = x]. This
is a stochastic matrix, which means all entries are nonnegative and all rows sum to 1.

A time-homogeneous discrete-time Markov Chain has an initial distribution µ0 : I → [0, 1], where
µ0(x) = P[X0 = x] for all x ∈ I. It also has a transition matrix P , as described. From now on, we
take the state space I to be some countable (possibly finite) set.

Note: There is some space (Ω,F ,P) with respect to which probabilities are defined, but we do
not consider it in detail in this course.

Definition 1.2 (Continuous-Time Process)

We now consider a continuous-time process: if Xt = (X(t) : t  0) is a right-continuous
function taking values in I, then we call X = Xt: a continuous-time random process if:

1. for all t  0, X(t) is a random variable with values in I.

2. for all ω ∈ Ω, t → Xt(ω) has right-continuous sample paths: for all t. That is, there is
some ε > 0 such that Xs(ω) = Xt(ω) for all s ∈ [t, t+ ε].

A right-continuous random process is determined by its finite-dimensional distributions:

P[Xt0 = i0, . . . , Xtn = in] : n ∈ N, tk  0, ik ∈ I.

That is, a random process is determined by all finite experiments on it. (We do not prove this).

For every ω ∈ Ω, the path t → Xt(ω) of a right-continuous process remains constant for some time.
There are thus three possibilities for such a path:

1. The path makes infinitely many jumps, but only finitely many within any finite interval. For
example, if Xt makes a jump at each integer t ∈ N, then this case holds.

2. The path makes finitely many jumps in its entire lifetime, before being absorbed in a state.
This means that ∃T with Xt = XT for all t > T .

3. There is a single finite interval within which the path makes infinitely many jumps. For
example, if Xt makes a jump at times 1 − 2n for n ∈ N, then it will make infinitely many
jumps in the first second. Here, T = 1 is called the explosion time, and the process starts
again after it. We usually ignore everything after the first explosion time.
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Definition 1.3 (Jump Times)

The jump times Ji for i = 0, 1, 2 . . . (when the process changes value) and the holding times
Si for i = 1, 2, 3 . . . (the duration between successive jumps) are formally given by:

J0 = 0, Jn+1 = inf {t > Jn : Jt ∕= Jn} , and Sn = Jn+1 − Jn.

If there are only finitely many jumps, then we take inf ∅ = ∞, and ∞−∞ = ∞, so that these
are all well-defined. In this case, we define X∞ = limt→∞ Xt, which is then well-defined.

The first explosion time ζ is then defined as the supremum of the jump times sup Jn. We
thus set Xt = ∞ for all t  ζ, adjoining a new state ∞ to I if needed.

With these definitions in mind, we may define a Markov process, which is the continuous-time
equivalent of a Markov chain.

Definition 1.4 (Markov Process)

A continuous-time right-continuous random process X = (Xt)t0 is called a Markov process
if for all i1 . . . in ∈ I and all 0 < t1 < · · · < tn, we have

P[Xtn = in | Xtn−1
= in−1, . . . , Xt0 = i0] = P[Xn = xn | Xtn−1

= in−1].

For all h > 0, note that Zn = Xhn is a discrete-time Markov chain.

The transition probabilities are now a function Pij(s, t) = P[Xt = j | Xs = i] for s  t and
i, j ∈ I. We call this process time-homogeneous if Pij(s, t) can be expressed as a function of
t− s, the time difference, independently of s: Pij(s, t) = Pij(0, t− s) for all t > 0.

Much like the discrete-time case, continuous-time Markov processes on some state space I are
characterised by two things: an initial distribution λi = P[X0 = i] for i ∈ I, and an uncountably
infinite family of transition matrices P (t)t0.

This family is called the transition semigroup of the Markov process. P (0) = 0, and for all t  0,
P (t) is a stochatic matrix.

Proposition 1.5 (Transition Semigroup)

The transition semigroup of any Markov Process also satisfies the semigroup property:

P (t+ s) = P (t)P (s) ∀s, t  0.

Proof: This can be shown algebraically using the Markov property:

Pxz(t+ s) = P[Xt+s = z | X0 = x]

=


y∈I

P[Xt+s = z | Xt = y,X0 = x]× P[Xt = y | X0 = x]

=


y∈I

P[Xt+s = z | Xt = y]× P[Xt = y | X0 = x]

=


y∈I

Pxy(s)× Pyz(t)

which is precisely the definition of P (t)P (s). □
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1.2 Holding Times

Note: From now on, we suppose that all Markov chains are right-continuous, time-homogeneous,
continuous-time, and take values within a countable state space I.

Let’s say X is such a Markov chain which starts at x. How long does it stay there? We call Sx

the “holding time at x”. How long is this holding time? Since X is right-continuous, Sx > 0. Now
suppose that s, t  0. We have

P[Sx > t+ s | Sx > s] = P

Xu = x ∀u ∈ [0, t+ s] | Xu = x ∀u ∈ [0, s]



= P

Xu = x ∀u ∈ [s, t+ s] | Xs = x


by the Markov property

= P

Xu = x ∀u ∈ [0, t] | X0 = x


by time-homogeneity

= P [Sx > t]

Therefore Sx has the memoryless property for any state x ∈ I.

Theorem 1.6 (Memoryless Property)

Let X be a positive random variable. Then X has the memoryless property

P [X > t+ s | X > s] =⇒ P [X > t] ∀s, t  0

if and only if X is exponentially distributed.

Proof: (⇒) We have P[X > s+ t | X > s] = e−λ(s+t)/e−λs = e−λt = P[X > t].

(⇐) Set G(t) = P[X > t]: the probability X exceeds a given value. Then the memoryless property
gives us the condition on G:

G(t+ s) = P[X > t+ s] = P [X > t+ s | X > s]× P[X > s] = P[X > t]× P[X > s] = G(t)G(s).

Since X > 0 almost surely, there is some n such that G(1/n) = P[X > 1/n] > 0. Then G(1) can
be written as G(1) = G(1/n + · · · + 1/n) = G(1/n)n > 0. Therefore we can set G(1) = e−λ for
some λ  0 (since G(1)  1).

Therefore for all k ∈ N , we have G(k) = G(1 + · · ·+ 1) = F (1)k = e−kλ. This means that for all
p, q ∈ N, we must have G(p/q) = G(1/q)p, but G(1/q)q = G(1), so this is e−(p/q)λ.

Thus for any t  0, we have r, s ∈ Q with r  t  s. Since G is decreasing, G(s)  G(t)  G(r).
Thus if s ↓ t and r ↑ t, we have G(t) = e−λt for all t  0.

But then P[X  t] = 1− e−λt for all t, which is the definition of X ∼ Exponential(λ). □

1.3 The Poisson Process

Now we consider the canonical continuous-time Markov chain: the Poisson process on R+.

Definition 1.7 (Basic Poisson Process)

Suppose that S1, S2, . . . is a sequence of iid. random variables, with S ∼ Exp(λ). Define the
jump times J0 = 0, J1 = S1, Jn = S1 + · · ·+ Sn. Then set Xt = i if Ji  t < Ji+1 for i ∈ N0.

Then X is called a Poisson process on R+ with parameter λ. Note that X is right-continuous
and non-decreasing.



6 · Applied Probability Avish Kumar

Note: We sometimes refer to the jumps Ji as the points of a Poisson process, so that Xt is the
number of points in the interval [0, t].

Theorem 1.8 (Markov Property of Poisson Processes)

Let (Xt)t0 be a Poisson process with parameter λ, written PP(λ). Then for any s  0, the
process (Xs+t −Xs)t0 is also PP(λ) and is independent of (Xr)r<s.

Proof: Set Yt = Xs+t −Xs for t  0. Then let i ∈ N0 and condition on Xs = i. Then the jump
times for the process Y are given by Ji+1 − s, Ji+2 − s, . . . since Ji < s.

The holding times are given by T1 = Ji+1 − s = Ji + Si+1 − s = Si+1 − (s− Ji), and future times
are Tj = Si+j , where J and S are the jump times and holding times of X.

Since {Xs = i} = {Ji  s} ∪ {Si+1 > s− Ji}, the distribution of T1 conditioned on Xs = i is:

P[T1 > t | Xs = i] = P[Si+1 > s− Ji + t | Ji  s, si+1 > s− Ji]

Using the independence of Si+1 and Ji, this is simply P [Si+1 > t] by memorylessness. But the Si

are independent, so we just see that T1 ∼ Exp(λ).

Moreover, the times Tj for j  2 are independent of Sk for k  i + 1, and hence independent of
(Xr)r<s, and so they are distributed in the same way. □

Definition 1.9 (Stopping Time)

A random variable T with values in [0,∞] is called a stopping time if for all t ∈ R, the event
{T  t} depends only on (Xs)st. That is, a stopping time is an event whereby “you know
when you have hit it”.

The random variable T = inf {t : Xt  2} is thus a stopping time, since we can stop when
we first hit 2, but the event T = inf {t : Xt = sup(Xi)} is not, since we don’t know if we will
later hit a larger value.

Theorem 1.10 (Strong Markov Property)

Let (Xt)t0 ∼ PP(λ), with T a stopping time. Then conditioning on T < ∞, the process
(Xs+T −XT )s0 is also PP(λ) and independent of (Xr)rT .

The following theorem gives three equivalent characterisations of Poisson Processes. Any of these
can be used to define the process,

Theorem 1.11 (Poisson Process Formulations)

Let (Xt) be an increasing right-continuous process taking values in N0 with X0 = 0. Also, let
λ > 0 be a constant. Then the following definitions of a Poisson Process are equivalent:

1. The holding times S1, S2 . . . are iid. exponential random variables with parameter λ
and the jump chain is Yn = n. This is the traditional definition of a Poisson process.

2. X has independent increments and as h ↓ 0, we have the two relations (uniformly in t)
P[Xt+h −Xt = 1] = λh+O(h), and P[Xt+h −Xt = 0] = 1− λh+O(h).

3. X has independent and stationary increments, and Xt ∼ Poisson(λt) for all t  0. That
is, the increment process is shift-invariant: the process (Xt+s − Xs)t0 has the same
distribution as (Xt)t0, which is therefore time-homogeneous.

All of these uniquely define the Poisson Process on R+.
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Proof: (1 ⇒ 2) If the holding times are iid. exponential random variables, then the increments
are independent and stationary. Thus uniformly in t, as h ↓ 0, we have

P[Xt+h −Xt = 0] = P[Xh = 0] = P[S1 > h] = e−λh = 1− λh+O(h),

where equalities arise from stationarity, definition of holding times, the exponential distribution,
and the Taylor expansion of the exponential function. Also,

P[Xt+h −Xt  1] = P[Xh  1] = P[S1  h] = 1− e−λh = λh+O(h)

P[Xt+h −Xt  2] = P[Xh  2] = P[S1 + S2  h]

 P[S1  h, S2  h] = P[S1  h]× P[S2  h] by independence

= (1− e−λh)2 = O(λh)

Therefore the probability P[Xt+h −Xt = 1] is λh+O(h) uniformly in t. □
Proof: (2 ⇒ 3) If X has independent increments and the probabilities converge uniformly in the
way described, X must have stationary increments. Thus we may simply prove Xt ∼ Poisson(λt).

Since the increments of X are independent and X is increasing, we have

pj(t+ h) = P[Xt+h = j] =

j

i=0

P[Xt = j − i]× P[(Xt+h −Xt) = i]

For small h, we can assume i = 0, 1: the contribution from other terms is at most O(h). Thus

pj(t+ h) = P[Xt = j]× P[(Xt+h −Xt) = 0]

+ P[Xt = j − 1]× P[(Xt+h −Xt) = 1] +O(h)

Using the properties given by (2), we can simplify this to

pj(t+ h) = pj(t)(1− λh) + pj−1(t)λh+O(h)

which means as h ↓ 0, we get p′j(t) = −λpj(t) + λpj−1t. Differentiating eλtpj(t) yields

d

dt


eλtpj(t)


= eλtp′j(t) + λeλtpj(t) = λeλtpj−1(t)

For j = 0 we get p0(t+ h) = p0(t)(1− λh+O(h)), so p′0(t) = −λp0(t). This gives p0(t) = ce−λx,
which combined with the condition p0(0) = 0 gives p0(t) = e−λx.

Now by induction, we get pj(t) = e−λt × (λt)j/j!, so Xt ∼ Poisson(λt) for all t as required. □
Proof: (3 ⇒ 1) Observe that (3) determines the finite-dimensional distributions of X. If the
increments are independent and stationary, with Xt ∼ Poisson(λt) for all t, then for t1 < · · · < tn
and k1, . . . , kn we have

P[Xt1 = k1, . . . , Xtn = kn] = P[Xt1 = k1, Xt2 −Xt1 = k2 − k1, . . . , XtnXtn−1 = kn − kn−1]

= P[Xt1 = k1]× · · ·× P[Xtn −Xtn−1
= kn − kn−1]

= P[Xt1 = k1]  
∼Poisson(λt1)

× · · ·× P[Xtn−tn−1 = kn − kn−1]  
∼Poisson(λ(tn−tn−1))

which is therefore determinate. Since the finite-dimensional distributions of a right-continuous
process define it uniquely, and we already know a process with these distributions, it must be the
correct one, and therefore X must be a Poisson process. □
Proof: (overall) Therefore (1), (2), and (3) are equivalent definitions of the Poisson process, and
so we may use properties from any of them in future. □
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Theorem 1.12 (The Superposition Principle)

Suppose that X ∼ PP(λ) and Y ∼ PP(µ) are independent. Then we may superpose the two
to obtain a new process Z = X + Y (which this jumps whenever either X or Y jump), which
is also a Poisson Process with rate λ+ µ.

Proof: We use the fact that the increments Xt ∼ Poisson(λt) and Yt ∼ Poisson(µt) of the two
processes are all independent. Therefore the increments Zt ∼ (Poisson(λt) + Poisson(µt)), which
we know is also a Poisson random variable with rate λ+ µ. Thus Z ∼ PP(λ+ µ). □
Note: We can also prove this by expanding the second definition of the Poisson Process.

Theorem 1.13 (Thinning Property)

Suppose X ∼ PP(λ), and keep each point with probability p (deleting them otherwise), all
independently of each other. Then the result is also a Poisson process with parameter pλ.

More generally, colour all the points of a Poisson process with the colours c1 . . . cm, each with
probability p1 . . . pm where


pi = 1. Then the result is m independent Poisson processes,

with parameters piλ for 1  i  λ.

Formally, let X ∼ PP(λ) and (Zi)i0 be a sequence of iid. Bernoulli random variables, with
success probability p. Let Y be a process with jumps at time t if and only if X jumps at t
and ZXi = 1. Then Y ∼ PP(pλ) and X − Y ∼ PP((1− p)λ), and these are independent.

Proof: We use the infinitesimal definition from (1.11). The independence of Y follows from that
of X. Then we have

P[Yt+h − Yt = 1] = p× P[Xt+h −Xt = 1] +O(h)

= pλh+O(h)

P[Yt+h − Yt = 0] = p× P[Xt+h −Xt = 0] + (1− p)× P[Xt+h −Xt = 1] +O(h)

= 1− λh+ (1− p)(λh+O(h)) +O(h)

= 1− pλh+O(h)

Thus Y ∼ PP(pλ). Similarly, X − Y ∼ PP((1− p)λ).

To prove independence, since both processes are right-continuous and increasing, we need only
prove that the finite-dimensional distributions are independent. That is, show for all t1 < · · · < tk,
m1 < · · · < mk, and n1 < · · · < nk we have

P[Yt1 = n1 . . . Ytk = nk, (X − Y )t1 = m1 . . . (X − Y )tk = mk]

= P[Yt1 = n1 . . . Ytk = nk]× P[(X − Y )t1 = m1 . . . (X − Y )tk = mk]

We will show this for k = 1: the general case follows similarly. We see that

P[Yt = n,Xt − Yt = m] = P[Yt = n]× P[Xt − Yt = m]

= P[Yt = n | Xt = m+ n]× P[Xt = m+ n]

=


m+ n

n


× pn(1− p)m × e−λt × (λt)m+n

(m+ n)!

=
e−λtp × (λtp)n

n!
× e−λt(1−p) × (λt(1− p))m

m!
= P[Yt = n]× P[Xt − Yt = m],

proving the result. □
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Theorem 1.14 (Uniform Order Statistics)

Let X ∼ PP(λ). Conditional on the event {Xt = n}, the jump times J1 . . . Jn have a joint
density equal to

f(t1 . . . tn) =
n!

tn
1{0t1...tnt}

where the correcting factor of n! in the numerator is to account for the permutations.

That is, the jump times have the order statistics of n iid. Uniform[0, t] random variables.

Proof: Since S1, S2 . . . are iid. Exponential(λ) random variables, the joint density is:

λn+1e−λ(S1+···+Sn+1)1{S1...Sn+1>0}

Thus the jump times J1 = S1, J2 = S1 + S2 and so on have the joint density:

g(t1 . . . tn+1) = λn+1e−λtn+11{0t1...tnt}

where we use the fact that tn+1 is the sum of the first n + 1 holding times, the Jacobian of the
transformation has determinant 1, and positivity can be rewritten as an order condition.

Now, we take A ⊆ Rn. We must have

P[(J1 . . . Jn) ∈ A,Xt = n] = P[(J1 . . . Jn) ∈ A, Jn  t < Jn+1]

=



(t1...tn)∈A,tnt<tn+1

λn+1e−λtn+11{0t1...tntn+1}

=



(t1...tn)∈A

 ∞

tn+1=t

λn+1e−λtn+11{0t1...tnt}

=



(t1...tn)∈A

λn+1e−λt1{0t1...tnt}

Dividing this by P[Xt = n] = e−tλ(λt)n/n! yields

P[(J1 . . . Jn) ∈ A,Xt = n] =



(t1...tn)∈A

n!

tn
× 1{0t1...tnt}

exactly as required. □

1.4 Birth Process

We now move from Poisson processes in particular to considering a slightly more general process:
the birth process.

Definition 1.15 (Birth Process)

For each i, let Si ∼ Exponential(qi) be independent. Set Ji = S1 + · · · + Si and Xt = i if
Ji  t < Ji+1.

A simple birth process takes qi = iλ for some λ > 0.

Note: A Poisson process of parameter λ is also a birth process with parameters qi = λ for all i.

Note: The simple birth process represents a population of a species, where each individual gives
birth with intervals given by Exponential(λ) random variables.
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Proposition 1.16 (I)

Let (Tk)k1 be a sequence of independent random variables with Tk ∼ Exponential(qk) and
0 < q =


k < ∞. Define T = infk Tk. Then we have

1. T ∼ Exponential(q).

2. The infimum is almost surely attained at a unique point K, with P[K = k] = qk/q.

3. T and K are independent of each other.

Proof: In Example Sheet 1. □


