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1 Continuous-Time Markov Chains

1.1 The Markov Property

A stochastic process, or sometimes just a process, is a sequence of random variables X = (X,,)nen, -

Definition 1.1 (Markov Chain)

A stochastic process is said to have the Markov property if the future and the past are
independent, given the present. That is, for any k > n, the conditional distribution of X}
given X5 ... X, (the future given the past and present) is the same as that given X,, alone
(only the present).

The process X is called a discrete-time Markov Chain with state space I if:
Vl‘o,xl, co.xp €1, P[Xn = Tn | Xn1=xp_1,...,X0= l‘o] = P[Xn = Tn | Xpo1 = xn_l].

If these probabilities are independent of n, then the chain is called time-homogeneous. We
then write P = (Pyy)z,yer for the transition matrix with P,y = P[X,, =y | X,—1 = «|. This
is a stochastic matrix, which means all entries are nonnegative and all rows sum to 1.

A time-homogeneous discrete-time Markov Chain has an initial distribution pg : I — [0, 1], where
po(x) = P[Xo = «] for all € I. Tt also has a transition matrix P, as described. From now on, we
take the state space I to be some countable (possibly finite) set.

Note: There is some space (2, F,P) with respect to which probabilities are defined, but we do
not consider it in detail in this course.

Definition 1.2 (Continuous-Time Process)

We now consider a continuous-time process: if X; = (X(¢) : ¢ > 0) is a right-continuous
function taking values in I, then we call X = X;: a continuous-time random process if:

1. for all t > 0, X(¢) is a random variable with values in I.

2. for all w € Q, t — X;(w) has right-continuous sample paths: for all ¢. That is, there is
some € > 0 such that Xs(w) = Xy(w) for all s € [t,t +¢].

A right-continuous random process is determined by its finite-dimensional distributions:
P[Xt, =i0,...,Xt, =in):n €Nyt > 0,4) € 1.

That is, a random process is determined by all finite experiments on it. (We do not prove this).

For every w € Q, the path ¢ — X;(w) of a right-continuous process remains constant for some time.
There are thus three possibilities for such a path:

1. The path makes infinitely many jumps, but only finitely many within any finite interval. For
example, if X; makes a jump at each integer ¢ € N, then this case holds.

2. The path makes finitely many jumps in its entire lifetime, before being absorbed in a state.
This means that 37T with X; = X7 for all ¢t > T.

3. There is a single finite interval within which the path makes infinitely many jumps. For
example, if X; makes a jump at times 1 — 2" for n € N, then it will make infinitely many
jumps in the first second. Here, T' = 1 is called the explosion time, and the process starts
again after it. We usually ignore everything after the first explosion time.



4 - Applied Probability Avish Kumar

Definition 1.3 (Jump Times)

The jump times J; for i = 0,1,2... (when the process changes value) and the holding times
S; for i =1,2,3... (the duration between successive jumps) are formally given by:

Jo=0,  Jopr=inf{t>Jp:Jy £ T}, and S, = Joi1 — Jn.

If there are only finitely many jumps, then we take inf @ = 0o, and co — oo = o0, so that these
are all well-defined. In this case, we define X, = lim;_, o X;, which is then well-defined.

The first explosion time ( is then defined as the supremum of the jump times sup J,. We
thus set Xy = oo for all ¢ > (, adjoining a new state oo to I if needed.

With these definitions in mind, we may define a Markov process, which is the continuous-time
equivalent of a Markov chain.

Definition 1.4 (Markov Process)

A continuous-time right-continuous random process X = (Xy);>o is called a Markov process
ifforalli;...i, € Tandall0 <t; < --- <t,, we have

P[th = Zn | th_l = in—l; coo aXto = ZQ} = P[Xn =Tn | th_l = in—l]-

For all h > 0, note that Z,, = X}, is a discrete-time Markov chain.

The transition probabilities are now a function Pj;(s,t) = P[X; = j | X; =] for s < ¢t and
i,7 € I. We call this process time-homogeneous if P;;(s,t) can be expressed as a function of
t — s, the time difference, independently of s: P;;(s,t) = P;;(0,t — s) for all £ > 0.

Much like the discrete-time case, continuous-time Markov processes on some state space I are
characterised by two things: an initial distribution \; = P[Xy = ] for ¢ € I, and an uncountably
infinite family of transition matrices P(t);>0.

This family is called the transition semigroup of the Markov process. P(0) = 0, and for all ¢ > 0,
P(t) is a stochatic matrix.

Proposition 1.5 (Transition Semigroup)

The transition semigroup of any Markov Process also satisfies the semigroup property:
P(t+s)=P(t)P(s) Vs,t>0.
Proof: This can be shown algebraically using the Markov property:

sz(t+3):P[Xt+s:Z|X0:x]
:ZIP[Xt+S:z|Xt:y,X0:x]xIP’[Xt:y|X0:x]

yel

=Y PXiyo=2| Xy =y x P[X, =y | Xo = 2]
yel

=" Poy(s) x Pya(t)
yel

which is precisely the definition of P(t)P(s). O
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1.2 Holding Times

Note: From now on, we suppose that all Markov chains are right-continuous, time-homogeneous,
continuous-time, and take values within a countable state space I.

Let’s say X is such a Markov chain which starts at . How long does it stay there? We call S,
the “holding time at z”. How long is this holding time? Since X is right-continuous, S, > 0. Now
suppose that s,t > 0. We have

P[S, >t+5| S, > s :IP{X“ —zVue(0,t+s]| Xy=aVue [O,s]}
= P{Xu =z Vu€[s,t+s]|Xs= m] by the Markov property
= ]P’[Xu =z VYuel0,t]| Xo= x] by time-homogeneity
=P[S, > t]

Therefore S, has the memoryless property for any state x € I.

Theorem 1.6 (Memoryless Property)

Let X be a positive random variable. Then X has the memoryless property

PX>t+s|X>s] = P[X >t Vs, t >0

if and only if X is exponentially distributed.

Proof: (=) We have P[X > s+t | X > s] = e A7) /o725 = =M = P[X > ¢].

(<) Set G(t) = P[X > t]: the probability X exceeds a given value. Then the memoryless property
gives us the condition on G:

Gt+s)=PX>t+s]=P[X>t+s|X >s] xP[X >s]=PX >t] x P[X >s] =G(t)G(s).

Since X > 0 almost surely, there is some n such that G(1/n) = P[X > 1/n] > 0. Then G(1) can
be written as G(1) = G(1/n+ --- + 1/n) = G(1/n)" > 0. Therefore we can set G(1) = e~ for
some A > 0 (since G(1) < 1).

Therefore for all k € N, we have G(k) = G(1 +---+ 1) = F(1)* = e**. This means that for all
p,q € N, we must have G(p/q) = G(1/q)?, but G(1/¢q)? = G(1), so this is e~ /DA,

Thus for any ¢ > 0, we have r,s € Q with » < ¢ < s. Since G is decreasing, G(s) < G(t) < G(r).
Thus if s | t and r 1 ¢, we have G(t) = e~ for all t > 0.

But then P[X < ¢] =1 — e~ for all ¢, which is the definition of X ~ Exponential(\). O

1.3 The Poisson Process

Now we consider the canonical continuous-time Markov chain: the Poisson process on R .

Definition 1.7 (Basic Poisson Process)

Suppose that S, 52, ... is a sequence of iid. random variables, with S ~ Exp(\). Define the
jump times Jy =0, J; = 51, J, =51+ -+ 5,. Then set X; =i if J; <t < J;41 for i € Np.

Then X is called a Poisson process on R™ with parameter . Note that X is right-continuous
and non-decreasing.
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Note: We sometimes refer to the jumps J; as the points of a Poisson process, so that X; is the
number of points in the interval [0, ¢].

Theorem 1.8 (Markov Property of Poisson Processes)
Let (X;)¢>0 be a Poisson process with parameter A, written PP(X). Then for any s > 0, the
process (Xs4+ — Xs)e>o0 is also PP(\) and is independent of (X, ),<s.
Proof: Set Y; = X 44 — X for t > 0. Then let ¢ € Ny and condition on X = ¢. Then the jump
times for the process Y are given by J;11 — 8, Ji12 — s,... since J; < s.

The holding times are given by Ty = J; 11 — s = J; + Sit1 — s = Siy1 — (s — J;), and future times
are T; = S;1;, where J and S are the jump times and holding times of X.

Since {X, =i} = {J; < s} U{Si+1 > s — J;}, the distribution of T} conditioned on Xy = i is:
P[Tl >t|XS:i]=P[Si+1 >8—Ji+t| J; < S8, 8541 >8—Ji]

Using the independence of S;;1 and J;, this is simply P[S;+1 > t] by memorylessness. But the .S;

are independent, so we just see that T} ~ Exp(}).

Moreover, the times T} for j > 2 are independent of Sj for £ < i + 1, and hence independent of
(X, )r<s, and so they are distributed in the same way. O

Definition 1.9 (Stopping Time)

A random variable T with values in [0, 00] is called a stopping time if for all ¢t € R, the event
{T' <t} depends only on (X;)s<¢. That is, a stopping time is an event whereby “you know
when you have hit it”.

The random variable T' = inf {¢ : X; > 2} is thus a stopping time, since we can stop when
we first hit 2, but the event T = inf {¢ : X; = sup(X;)} is not, since we don’t know if we will
later hit a larger value.

Theorem 1.10 (Strong Markov Property)

Let (X¢)i>0 ~ PP(\), with T a stopping time. Then conditioning on T' < oo, the process
(Xs+1 — X7)s>0 is also PP(X) and independent of (X,),<7.

The following theorem gives three equivalent characterisations of Poisson Processes. Any of these
can be used to define the process,

Theorem 1.11 (Poisson Process Formulations)

Let (X;) be an increasing right-continuous process taking values in Ny with Xy = 0. Also, let
A > 0 be a constant. Then the following definitions of a Poisson Process are equivalent:

1. The holding times S, S5 ... are iid. exponential random variables with parameter \
and the jump chain is Y,, = n. This is the traditional definition of a Poisson process.

2. X has independent increments and as h | 0, we have the two relations (uniformly in ¢)
]P)[Xt+h - Xt = ].] = \h + O(h), and P[Xt+h - Xt = 0] =1-—M\h + O(h)

3. X has independent and stationary increments, and X; ~ Poisson(At) for all t > 0. That
is, the increment process is shift-invariant: the process (X;4+s — Xs)¢>0 has the same
distribution as (X¢):>0, which is therefore time-homogeneous.

All of these uniquely define the Poisson Process on RT.
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Proof: (1 = 2) If the holding times are iid. exponential random variables, then the increments
are independent and stationary. Thus uniformly in ¢, as h | 0, we have

P[Xiin — X; =0] =P[X, =0 =P[S; >h] =e M =1- X+ 0O(h),

where equalities arise from stationarity, definition of holding times, the exponential distribution,
and the Taylor expansion of the exponential function. Also,

Therefore the probability P[X;y, — X¢ = 1] is Ah + O(h) uniformly in ¢. O

Proof: (2 = 3) If X has independent increments and the probabilities converge uniformly in the
way described, X must have stationary increments. Thus we may simply prove X; ~ Poisson(\t).

Since the increments of X are independent and X is increasing, we have

pi(t+h) =P[Xpyp = j] = Y PIX; = j —i] x P[(Xppn — X;) = d]
1=0

For small h, we can assume ¢ = 0,1: the contribution from other terms is at most O(h). Thus

pj(t+h) =P[X; = j] X P[(Xeyn — Xi) = 0]
+P[X¢ = j — 1] x P[(Xeyn — X¢) = 1]+ O(h)

Using the properties given by (2), we can simplify this to
pi(t+h) =p;(t)(1 — Ah) 4+ pj—1(t)Ah + O(h)
which means as h | 0, we get p}(t) = —Ap;(t) + Ap;_1t. Differentiating e*p;(t) yields

d
T (eMp; (1)) = eMp(t) + AeMp;(t) = AeMp;_1 (1)

For j = 0 we get po(t + h) = po(t)(1 — Ah + O(h)), so ph(t) = —Apo(t). This gives po(t) = ce 7,
which combined with the condition po(0) = 0 gives po(t) = e~ **.

Now by induction, we get p;(t) = e~ x (At)7/j!, so X; ~ Poisson(At) for all ¢ as required. O

Proof: (3 = 1) Observe that (3) determines the finite-dimensional distributions of X. If the
increments are independent and stationary, with X; ~ Poisson(At) for all ¢, then for t; < .-+ < t,
and kq,...,k, we have

P[th = k‘l; . ,Xt = kn] = P[th = klath — th = k’g — ]{,’1, . ’thth—l = kn — kn—l]
[th = kl} X oo X ]P)[Xt" — Xt",l = kn — kn—l]

=P
= ]P)[th = kl} X X P[th*tn—l = kn — knfl]
—_————

n

NPOiSSOn(/\tl) NPoisson()\(tn—tn_l))

which is therefore determinate. Since the finite-dimensional distributions of a right-continuous
process define it uniquely, and we already know a process with these distributions, it must be the
correct one, and therefore X must be a Poisson process. O

Proof: (overall) Therefore (1), (2), and (3) are equivalent definitions of the Poisson process, and
SO we may use properties from any of them in future. O
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Theorem 1.12 (The Superposition Principle)

Suppose that X ~ PP(X) and Y ~ PP(u) are independent. Then we may superpose the two
to obtain a new process Z = X +Y (which this jumps whenever either X or Y jump), which
is also a Poisson Process with rate A + p.

Proof: We use the fact that the increments X; ~ Poisson(At) and Y; ~ Poisson(ut) of the two
processes are all independent. Therefore the increments Z; ~ (Poisson(At) + Poisson(ut)), which
we know is also a Poisson random variable with rate A + . Thus Z ~ PP(A + ). O

Note: We can also prove this by expanding the second definition of the Poisson Process.

Theorem 1.13 (Thinning Property)

Suppose X ~ PP(\), and keep each point with probability p (deleting them otherwise), all
independently of each other. Then the result is also a Poisson process with parameter pA.

More generally, colour all the points of a Poisson process with the colours ¢ ... ¢y, each with
probability p; ...p, where > p; = 1. Then the result is m independent Poisson processes,
with parameters p; A for 1 <i < .

Formally, let X ~ PP()) and (Z;);>0 be a sequence of iid. Bernoulli random variables, with
success probability p. Let Y be a process with jumps at time ¢ if and only if X jumps at ¢
and Zx, = 1. Then Y ~ PP(p\) and X — Y ~ PP((1 — p)A), and these are independent.

Proof: We use the infinitesimal definition from (1.11). The independence of Y follows from that
of X. Then we have

P[Yipn —Yi =1 = p x P[X; 4 — X; = 1] + O(h)
= pA\h + O(h)

PYirn =Y =0l =p x P[X¢qp — X = 0]+ (1 —p) x P[Xyyp, — Xp = 1] + O(R)
=1-= A+ (1=p)(Ah+ O(h)) + O(h)
=1—pA\h+O(h)

Thus Y ~ PP(pA). Similarly, X — Y ~ PP((1 — p)A).

To prove independence, since both processes are right-continuous and increasing, we need only
prove that the finite-dimensional distributions are independent. That is, show for all t; < --- < tg,
my < --- < myg,and ny < --- < ni we have

PY;, =n1...Y, =ng, (X =Y)y, =mq ... (X =Y);, =my]
=PY;, =n1... Y, =ng] X P(X =Y)y, =mq ... (X =Yy, = my]

We will show this for k = 1: the general case follows similarly. We see that

PY: =n,X; —Y: =m| =P[Y; =n] x P[X; - Y; =m]
=PY; =n| X =m+n| xPX;, =m+n]
m+n n m —At (At)m-HL
= 1 — _—
( n )Xp( p)" xe X(m+n)!
e—)\tp % ()\tp)” y e—)\t(l—p) x (/\t(l _p))m

n! m!
=P[Y; =n] x P[X; — Y; = m],

proving the result. O
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Theorem 1.14 (Uniform Order Statistics)

Let X ~ PP()A). Conditional on the event {X; = n}, the jump times J; ... .J, have a joint
density equal to
n!
fr.. . ta) = t—nl{ogtlg...gtngt}
where the correcting factor of n! in the numerator is to account for the permutations.

That is, the jump times have the order statistics of n iid. Uniform[0, ¢] random variables.

Proof: Since Sy, Sy... are iid. Exponential(\) random variables, the joint density is:

n+1,—A(S1++S
A € (51 n+1)1{51- .Sn+1>0}

Thus the jump times J; = S7, Jo = 51 + 52 and so on have the joint density:

— )\nJrlef)\t

gty .. tnt1) "0kt <. Ktn <t}

where we use the fact that t,; is the sum of the first n 4+ 1 holding times, the Jacobian of the
transformation has determinant 1, and positivity can be rewritten as an order condition.

Now, we take A C R™. We must have

P[(Jl )EA Xt—n P[ )EAJ t<Jn+1}

An+1€—)\t

+1
" L0<t < St <t }

/(t1 An)EA, <t<tpi1

n+1l_—At,
/ / AMTeT I T L o<t <.t <t}
(t1.tn)EA Jtpi1=t

tn

n+1 — At
/( : A)‘ L{ogty < <t <t}
t1...tn)€E

Dividing this by P[X; = n] = e~ **(\t)"/n! yields
n'

— X Liogt; <. <t <t}

]P)[(Jljn) GA,Xt:n] :/
(tr..tn)eA T

exactly as required. a

1.4 Birth Process

We now move from Poisson processes in particular to considering a slightly more general process:
the birth process.

Definition 1.15 (Birth Process)

For each i, let S; ~ Exponential(¢g;) be independent. Set J; = S; +--- 4+ 5; and X; = i if
Ji <t < Jita.

A simple birth process takes q; = i\ for some A\ > 0.

Note: A Poisson process of parameter X is also a birth process with parameters ¢; = A for all 7.

Note: The simple birth process represents a population of a species, where each individual gives
birth with intervals given by Exponential(\) random variables.
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Proposition 1.16 (I)

Let (Tx)r>1 be a sequence of independent random variables with T, ~ Exponential(gy) and
0<q=), <oo. Define T' = infy, T;. Then we have

1. T ~ Exponential(q).
2. The infimum is almost surely attained at a unique point K, with P[K = k] = ¢x/q.
3. T and K are independent of each other.

Proof: In Example Sheet 1. ]



