University of Cambridge

Part II of the Mathematical Tripos

Applied Probability

Lectured by Sourav Sarkar, Lent 2024–25

Notes by Avish Kumar ak2461@cam.ac.uk https://ak1089.github.io/maths/notes

Version 1.4

These notes are unofficial and may contain errors. While they are written and published with permission, they are not endorsed by the lecturer or University.

Contents

1	Continuous-Time Markov Chains	3
	1.1 The Markov Property	3
	1.2 Holding Times	5
	1.3 The Poisson Process	5
	1.4 Birth Process	9

1 Continuous-Time Markov Chains

1.1 The Markov Property

A stochastic process, or sometimes just a process, is a sequence of random variables $X = (X_n)_{n \in \mathbb{N}_0}$.

Definition 1.1 (Markov Chain)

A stochastic process is said to have the *Markov* property if the future and the past are independent, given the present. That is, for any k > n, the conditional distribution of X_k given $X_1 \ldots X_n$ (the future given the past and present) is the same as that given X_n alone (only the present).

The process X is called a discrete-time Markov Chain with state space I if:

 $\forall x_0, x_1, \dots, x_n \in I, \ \mathbb{P}[X_n = x_n \mid X_{n-1} = x_{n-1}, \dots, X_0 = x_0] = \mathbb{P}[X_n = x_n \mid X_{n-1} = x_{n-1}].$

If these probabilities are independent of n, then the chain is called time-homogeneous. We then write $P = (P_{xy})_{x,y \in I}$ for the transition matrix with $P_{xy} = \mathbb{P}[X_n = y \mid X_{n-1} = x]$. This is a stochastic matrix, which means all entries are nonnegative and all rows sum to 1.

A time-homogeneous discrete-time Markov Chain has an initial distribution $\mu_0 : I \to [0, 1]$, where $\mu_0(x) = \mathbb{P}[X_0 = x]$ for all $x \in I$. It also has a transition matrix P, as described. From now on, we take the state space I to be some countable (possibly finite) set.

Note: There is some space $(\Omega, \mathcal{F}, \mathbb{P})$ with respect to which probabilities are defined, but we do not consider it in detail in this course.

Definition 1.2 (Continuous-Time Process)

We now consider a *continuous-time* process: if $X_t = (X(t) : t \ge 0)$ is a right-continuous function taking values in I, then we call $X = X_t$: a continuous-time random process if:

- 1. for all $t \ge 0$, X(t) is a random variable with values in I.
- 2. for all $\omega \in \Omega$, $t \mapsto X_t(\omega)$ has right-continuous sample paths: for all t. That is, there is some $\varepsilon > 0$ such that $X_s(\omega) = X_t(\omega)$ for all $s \in [t, t + \varepsilon]$.

A right-continuous random process is determined by its finite-dimensional distributions:

$$\mathbb{P}[X_{t_0} = i_0, \dots, X_{t_n} = i_n] : n \in \mathbb{N}, t_k \ge 0, i_k \in I.$$

That is, a random process is determined by all finite experiments on it. (We do not prove this).

For every $\omega \in \Omega$, the path $t \mapsto X_t(\omega)$ of a right-continuous process remains constant for some time. There are thus three possibilities for such a path:

- 1. The path makes infinitely many jumps, but only finitely many within any finite interval. For example, if X_t makes a jump at each integer $t \in \mathbb{N}$, then this case holds.
- 2. The path makes finitely many jumps in its entire lifetime, before being absorbed in a state. This means that $\exists T$ with $X_t = X_T$ for all t > T.
- 3. There is a single finite interval within which the path makes infinitely many jumps. For example, if X_t makes a jump at times $1 2^n$ for $n \in \mathbb{N}$, then it will make infinitely many jumps in the first second. Here, T = 1 is called the explosion time, and the process starts again after it. We usually ignore everything after the first explosion time.

Definition 1.3 (Jump Times)

The jump times J_i for i = 0, 1, 2... (when the process changes value) and the holding times S_i for i = 1, 2, 3... (the duration between successive jumps) are formally given by:

 $J_0 = 0,$ $J_{n+1} = \inf \{t > J_n : J_t \neq J_n\},$ and $S_n = J_{n+1} - J_n.$

If there are only finitely many jumps, then we take $\inf \emptyset = \infty$, and $\infty - \infty = \infty$, so that these are all well-defined. In this case, we define $X_{\infty} = \lim_{t \to \infty} X_t$, which is then well-defined.

The first explosion time ζ is then defined as the supremum of the jump times $\sup J_n$. We thus set $X_t = \infty$ for all $t \ge \zeta$, adjoining a new state ∞ to I if needed.

With these definitions in mind, we may define a Markov process, which is the continuous-time equivalent of a Markov chain.

Definition 1.4 (Markov Process)

A continuous-time right-continuous random process $X = (X_t)_{t \ge 0}$ is called a Markov process if for all $i_1 \dots i_n \in I$ and all $0 < t_1 < \dots < t_n$, we have

$$\mathbb{P}[X_{t_n} = i_n \mid X_{t_{n-1}} = i_{n-1}, \dots, X_{t_0} = i_0] = \mathbb{P}[X_n = x_n \mid X_{t_{n-1}} = i_{n-1}]$$

For all h > 0, note that $Z_n = X_{hn}$ is a discrete-time Markov chain.

The transition probabilities are now a function $P_{ij}(s,t) = \mathbb{P}[X_t = j \mid X_s = i]$ for $s \leq t$ and $i, j \in I$. We call this process time-homogeneous if $P_{ij}(s,t)$ can be expressed as a function of t-s, the time difference, independently of s: $P_{ij}(s,t) = P_{ij}(0,t-s)$ for all t > 0.

Much like the discrete-time case, continuous-time Markov processes on some state space I are characterised by two things: an initial distribution $\lambda_i = \mathbb{P}[X_0 = i]$ for $i \in I$, and an uncountably infinite family of transition matrices $P(t)_{t\geq 0}$.

This family is called the *transition semigroup* of the Markov process. P(0) = 0, and for all $t \ge 0$, P(t) is a stochatic matrix.

Proposition 1.5 (Transition Semigroup)

The transition semigroup of any Markov Process also satisfies the semigroup property:

$$P(t+s) = P(t)P(s) \quad \forall s, t \ge 0.$$

Proof: This can be shown algebraically using the Markov property:

$$P_{xz}(t+s) = \mathbb{P}[X_{t+s} = z \mid X_0 = x] \\ = \sum_{y \in I} \mathbb{P}[X_{t+s} = z \mid X_t = y, X_0 = x] \times \mathbb{P}[X_t = y \mid X_0 = x] \\ = \sum_{y \in I} \mathbb{P}[X_{t+s} = z \mid X_t = y] \times \mathbb{P}[X_t = y \mid X_0 = x] \\ = \sum_{y \in I} P_{xy}(s) \times P_{yz}(t)$$

which is precisely the definition of P(t)P(s).

1.2 Holding Times

Note: From now on, we suppose that all Markov chains are right-continuous, time-homogeneous, continuous-time, and take values within a countable state space *I*.

Let's say X is such a Markov chain which starts at x. How long does it stay there? We call S_x the "holding time at x". How long is this holding time? Since X is right-continuous, $S_x > 0$. Now suppose that $s, t \ge 0$. We have

$$\mathbb{P}[S_x > t + s \mid S_x > s] = \mathbb{P}\Big[X_u = x \ \forall u \in [0, t + s] \mid X_u = x \ \forall u \in [0, s]\Big]$$
$$= \mathbb{P}\Big[X_u = x \ \forall u \in [s, t + s] \mid X_s = x\Big] \text{ by the Markov property}$$
$$= \mathbb{P}\Big[X_u = x \ \forall u \in [0, t] \mid X_0 = x\Big] \text{ by time-homogeneity}$$
$$= \mathbb{P}[S_x > t]$$

Therefore S_x has the *memoryless property* for any state $x \in I$.

Theorem 1.6 (Memoryless Property)

Let X be a positive random variable. Then X has the memoryless property

$$\mathbb{P}\left[X > t + s \mid X > s\right] \implies \mathbb{P}\left[X > t\right] \qquad \forall s, t \ge 0$$

if and only if X is exponentially distributed.

Proof: (\Rightarrow) We have $\mathbb{P}[X > s + t \mid X > s] = e^{-\lambda(s+t)}/e^{-\lambda s} = e^{-\lambda t} = \mathbb{P}[X > t].$

 (\Leftarrow) Set $G(t) = \mathbb{P}[X > t]$: the probability X exceeds a given value. Then the memoryless property gives us the condition on G:

$$G(t+s) = \mathbb{P}[X > t+s] = \mathbb{P}\left[X > t+s \mid X > s\right] \times \mathbb{P}[X > s] = \mathbb{P}[X > t] \times \mathbb{P}[X > s] = G(t)G(s).$$

Since X > 0 almost surely, there is some n such that $G(1/n) = \mathbb{P}[X > 1/n] > 0$. Then G(1) can be written as $G(1) = G(1/n + \dots + 1/n) = G(1/n)^n > 0$. Therefore we can set $G(1) = e^{-\lambda}$ for some $\lambda \ge 0$ (since $G(1) \le 1$).

Therefore for all $k \in \mathbb{N}$, we have $G(k) = G(1 + \dots + 1) = F(1)^k = e^{-k\lambda}$. This means that for all $p, q \in \mathbb{N}$, we must have $G(p/q) = G(1/q)^p$, but $G(1/q)^q = G(1)$, so this is $e^{-(p/q)\lambda}$.

Thus for any $t \ge 0$, we have $r, s \in \mathbb{Q}$ with $r \le t \le s$. Since G is decreasing, $G(s) \le G(t) \le G(r)$. Thus if $s \downarrow t$ and $r \uparrow t$, we have $G(t) = e^{-\lambda t}$ for all $t \ge 0$.

But then $\mathbb{P}[X \leq t] = 1 - e^{-\lambda t}$ for all t, which is the definition of $X \sim \text{Exponential}(\lambda)$.

1.3 The Poisson Process

Now we consider the canonical continuous-time Markov chain: the Poisson process on \mathbb{R}^+ .

Definition 1.7 (Basic Poisson Process)

Suppose that S_1, S_2, \ldots is a sequence of iid. random variables, with $S \sim \text{Exp}(\lambda)$. Define the jump times $J_0 = 0$, $J_1 = S_1$, $J_n = S_1 + \cdots + S_n$. Then set $X_t = i$ if $J_i \leq t < J_{i+1}$ for $i \in \mathbb{N}_0$.

Then X is called a Poisson process on \mathbb{R}^+ with parameter λ . Note that X is right-continuous and non-decreasing.

Note: We sometimes refer to the jumps J_i as the *points* of a Poisson process, so that X_t is the number of points in the interval [0, t].

Theorem 1.8 (Markov Property of Poisson Processes)

Let $(X_t)_{t\geq 0}$ be a Poisson process with parameter λ , written $PP(\lambda)$. Then for any $s \geq 0$, the process $(X_{s+t} - X_s)_{t\geq 0}$ is also $PP(\lambda)$ and is independent of $(X_r)_{r\leq s}$.

Proof: Set $Y_t = X_{s+t} - X_s$ for $t \ge 0$. Then let $i \in \mathbb{N}_0$ and condition on $X_s = i$. Then the jump times for the process Y are given by $J_{i+1} - s$, $J_{i+2} - s$,... since $J_i < s$.

The holding times are given by $T_1 = J_{i+1} - s = J_i + S_{i+1} - s = S_{i+1} - (s - J_i)$, and future times are $T_j = S_{i+j}$, where J and S are the jump times and holding times of X.

Since $\{X_s = i\} = \{J_i \leq s\} \cup \{S_{i+1} > s - J_i\}$, the distribution of T_1 conditioned on $X_s = i$ is:

 $\mathbb{P}[T_1 > t \mid X_s = i] = \mathbb{P}[S_{i+1} > s - J_i + t \mid J_i \leqslant s, s_{i+1} > s - J_i]$

Using the independence of S_{i+1} and J_i , this is simply $P[S_{i+1} > t]$ by memorylessness. But the S_i are independent, so we just see that $T_1 \sim \text{Exp}(\lambda)$.

Moreover, the times T_j for $j \ge 2$ are independent of S_k for $k \le i+1$, and hence independent of $(X_r)_{r \le s}$, and so they are distributed in the same way.

Definition 1.9 (Stopping Time)

A random variable T with values in $[0, \infty]$ is called a *stopping time* if for all $t \in \mathbb{R}$, the event $\{T \leq t\}$ depends only on $(X_s)_{s \leq t}$. That is, a stopping time is an event whereby "you know when you have hit it".

The random variable $T = \inf \{t : X_t \ge 2\}$ is thus a stopping time, since we can stop when we first hit 2, but the event $T = \inf \{t : X_t = \sup(X_i)\}$ is not, since we don't know if we will later hit a larger value.

Theorem 1.10 (Strong Markov Property)

Let $(X_t)_{t \ge 0} \sim \operatorname{PP}(\lambda)$, with T a stopping time. Then conditioning on $T < \infty$, the process $(X_{s+T} - X_T)_{s \ge 0}$ is also $\operatorname{PP}(\lambda)$ and independent of $(X_r)_{r \le T}$.

The following theorem gives three equivalent characterisations of Poisson Processes. Any of these can be used to define the process,

Theorem 1.11 (Poisson Process Formulations)

Let (X_t) be an increasing right-continuous process taking values in \mathbb{N}_0 with $X_0 = 0$. Also, let $\lambda > 0$ be a constant. Then the following definitions of a Poisson Process are equivalent:

- 1. The holding times $S_1, S_2...$ are iid. exponential random variables with parameter λ and the jump chain is $Y_n = n$. This is the traditional definition of a Poisson process.
- 2. X has independent increments and as $h \downarrow 0$, we have the two relations (uniformly in t) $\mathbb{P}[X_{t+h} X_t = 1] = \lambda h + \mathcal{O}(h)$, and $\mathbb{P}[X_{t+h} X_t = 0] = 1 \lambda h + \mathcal{O}(h)$.
- 3. X has independent and *stationary* increments, and $X_t \sim \text{Poisson}(\lambda t)$ for all $t \ge 0$. That is, the increment process is shift-invariant: the process $(X_{t+s} X_s)_{t\ge 0}$ has the same distribution as $(X_t)_{t\ge 0}$, which is therefore time-homogeneous.

All of these uniquely define the Poisson Process on \mathbb{R}^+ .

$$\mathbb{P}[X_{t+h} - X_t = 0] = \mathbb{P}[X_h = 0] = \mathbb{P}[S_1 > h] = e^{-\lambda h} = 1 - \lambda h + \mathcal{O}(h),$$

where equalities arise from stationarity, definition of holding times, the exponential distribution, and the Taylor expansion of the exponential function. Also,

$$\mathbb{P}[X_{t+h} - X_t \ge 1] = \mathbb{P}[X_h \ge 1] = \mathbb{P}[S_1 \le h] = 1 - e^{-\lambda h} = \lambda h + \mathcal{O}(h)$$
$$\mathbb{P}[X_{t+h} - X_t \ge 2] = \mathbb{P}[X_h \ge 2] = \mathbb{P}[S_1 + S_2 \le h]$$
$$\leqslant \mathbb{P}[S_1 \le h, S_2 \le h] = \mathbb{P}[S_1 \le h] \times \mathbb{P}[S_2 \le h] \text{ by independence}$$
$$= (1 - e^{-\lambda h})^2 = \mathcal{O}(\lambda h)$$

Therefore the probability $\mathbb{P}[X_{t+h} - X_t = 1]$ is $\lambda h + \mathcal{O}(h)$ uniformly in t.

Proof: $(2 \Rightarrow 3)$ If X has independent increments and the probabilities converge uniformly in the way described, X must have stationary increments. Thus we may simply prove $X_t \sim \text{Poisson}(\lambda t)$. Since the increments of X are independent and X is increasing, we have

$$p_j(t+h) = \mathbb{P}[X_{t+h} = j] = \sum_{i=0}^j \mathbb{P}[X_t = j-i] \times \mathbb{P}[(X_{t+h} - X_t) = i]$$

For small h, we can assume i = 0, 1: the contribution from other terms is at most $\mathcal{O}(h)$. Thus

$$p_j(t+h) = \mathbb{P}[X_t = j] \times \mathbb{P}[(X_{t+h} - X_t) = 0]$$

+ $\mathbb{P}[X_t = j-1] \times \mathbb{P}[(X_{t+h} - X_t) = 1] + \mathcal{O}(h)$

Using the properties given by (2), we can simplify this to

$$p_j(t+h) = p_j(t)(1-\lambda h) + p_{j-1}(t)\lambda h + \mathcal{O}(h)$$

which means as $h \downarrow 0$, we get $p'_{j}(t) = -\lambda p_{j}(t) + \lambda p_{j-1}t$. Differentiating $e^{\lambda t}p_{j}(t)$ yields

$$\frac{\mathrm{d}}{\mathrm{d}t}\left(e^{\lambda t}p_j(t)\right) = e^{\lambda t}p'_j(t) + \lambda e^{\lambda t}p_j(t) = \lambda e^{\lambda t}p_{j-1}(t)$$

For j = 0 we get $p_0(t+h) = p_0(t)(1-\lambda h + \mathcal{O}(h))$, so $p'_0(t) = -\lambda p_0(t)$. This gives $p_0(t) = ce^{-\lambda x}$, which combined with the condition $p_0(0) = 0$ gives $p_0(t) = e^{-\lambda x}$.

Now by induction, we get $p_j(t) = e^{-\lambda t} \times (\lambda t)^j / j!$, so $X_t \sim \text{Poisson}(\lambda t)$ for all t as required. \Box

Proof: $(3 \Rightarrow 1)$ Observe that (3) determines the finite-dimensional distributions of X. If the increments are independent and stationary, with $X_t \sim \text{Poisson}(\lambda t)$ for all t, then for $t_1 < \cdots < t_n$ and k_1, \ldots, k_n we have

$$\mathbb{P}[X_{t_1} = k_1, \dots, X_{t_n} = k_n] = \mathbb{P}[X_{t_1} = k_1, X_{t_2} - X_{t_1} = k_2 - k_1, \dots, X_{t_n} X_{t_{n-1}} = k_n - k_{n-1}]$$

= $\mathbb{P}[X_{t_1} = k_1] \times \dots \times \mathbb{P}[X_{t_n} - X_{t_{n-1}} = k_n - k_{n-1}]$
= $\underbrace{\mathbb{P}[X_{t_1} = k_1]}_{\sim \text{Poisson}(\lambda t_1)} \times \dots \times \underbrace{\mathbb{P}[X_{t_n - t_{n-1}} = k_n - k_{n-1}]}_{\sim \text{Poisson}(\lambda (t_n - t_{n-1}))}$

which is therefore determinate. Since the finite-dimensional distributions of a right-continuous process define it uniquely, and we already know a process with these distributions, it must be the correct one, and therefore X must be a Poisson process.

Proof: (overall) Therefore (1), (2), and (3) are equivalent definitions of the Poisson process, and so we may use properties from any of them in future. \Box

Theorem 1.12 (The Superposition Principle)

Suppose that $X \sim PP(\lambda)$ and $Y \sim PP(\mu)$ are independent. Then we may *superpose* the two to obtain a new process Z = X + Y (which this jumps whenever either X or Y jump), which is also a Poisson Process with rate $\lambda + \mu$.

Proof: We use the fact that the increments $X_t \sim \text{Poisson}(\lambda t)$ and $Y_t \sim \text{Poisson}(\mu t)$ of the two processes are all independent. Therefore the increments $Z_t \sim (\text{Poisson}(\lambda t) + \text{Poisson}(\mu t))$, which we know is also a Poisson random variable with rate $\lambda + \mu$. Thus $Z \sim \text{PP}(\lambda + \mu)$.

Note: We can also prove this by expanding the second definition of the Poisson Process.

Theorem 1.13 (Thinning Property)

Suppose $X \sim PP(\lambda)$, and keep each point with probability p (deleting them otherwise), all independently of each other. Then the result is also a Poisson process with parameter $p\lambda$.

More generally, colour all the points of a Poisson process with the colours $c_1 \dots c_m$, each with probability $p_1 \dots p_m$ where $\sum p_i = 1$. Then the result is *m* independent Poisson processes, with parameters $p_i \lambda$ for $1 \leq i \leq \lambda$.

Formally, let $X \sim PP(\lambda)$ and $(Z_i)_{i \ge 0}$ be a sequence of iid. Bernoulli random variables, with success probability p. Let Y be a process with jumps at time t if and only if X jumps at t and $Z_{X_i} = 1$. Then $Y \sim PP(p\lambda)$ and $X - Y \sim PP((1-p)\lambda)$, and these are independent.

Proof: We use the infinitesimal definition from (1.11). The independence of Y follows from that of X. Then we have

$$\mathbb{P}[Y_{t+h} - Y_t = 1] = p \times \mathbb{P}[X_{t+h} - X_t = 1] + \mathcal{O}(h)$$

= $p\lambda h + \mathcal{O}(h)$
$$\mathbb{P}[Y_{t+h} - Y_t = 0] = p \times \mathbb{P}[X_{t+h} - X_t = 0] + (1-p) \times \mathbb{P}[X_{t+h} - X_t = 1] + \mathcal{O}(h)$$

= $1 - \lambda h + (1-p)(\lambda h + \mathcal{O}(h)) + \mathcal{O}(h)$
= $1 - p\lambda h + \mathcal{O}(h)$

Thus $Y \sim \text{PP}(p\lambda)$. Similarly, $X - Y \sim \text{PP}((1-p)\lambda)$.

To prove independence, since both processes are right-continuous and increasing, we need only prove that the finite-dimensional distributions are independent. That is, show for all $t_1 < \cdots < t_k$, $m_1 < \cdots < m_k$, and $n_1 < \cdots < n_k$ we have

$$\mathbb{P}[Y_{t_1} = n_1 \dots Y_{t_k} = n_k, (X - Y)_{t_1} = m_1 \dots (X - Y)_{t_k} = m_k] \\ = \mathbb{P}[Y_{t_1} = n_1 \dots Y_{t_k} = n_k] \times \mathbb{P}[(X - Y)_{t_1} = m_1 \dots (X - Y)_{t_k} = m_k]$$

We will show this for k = 1: the general case follows similarly. We see that

$$\begin{split} \mathbb{P}[Y_t = n, X_t - Y_t = m] &= \mathbb{P}[Y_t = n] \times \mathbb{P}[X_t - Y_t = m] \\ &= \mathbb{P}[Y_t = n \mid X_t = m + n] \times \mathbb{P}[X_t = m + n] \\ &= \binom{m+n}{n} \times p^n (1-p)^m \times e^{-\lambda t} \times \frac{(\lambda t)^{m+n}}{(m+n)!} \\ &= \frac{e^{-\lambda t p} \times (\lambda t p)^n}{n!} \times \frac{e^{-\lambda t (1-p)} \times (\lambda t (1-p))^m}{m!} \\ &= \mathbb{P}[Y_t = n] \times \mathbb{P}[X_t - Y_t = m], \end{split}$$

proving the result.

Theorem 1.14 (Uniform Order Statistics)

Let $X \sim PP(\lambda)$. Conditional on the event $\{X_t = n\}$, the jump times $J_1 \dots J_n$ have a joint density equal to

$$f(t_1 \dots t_n) = \frac{n!}{t^n} \mathbf{1}_{\{0 \le t_1 \le \dots \le t_n \le t\}}$$

where the correcting factor of n! in the numerator is to account for the permutations.

That is, the jump times have the order statistics of n iid. Uniform [0, t] random variables.

Proof: Since $S_1, S_2...$ are iid. Exponential(λ) random variables, the joint density is:

$$\lambda^{n+1} e^{-\lambda(S_1 + \dots + S_{n+1})} \mathbf{1}_{\{S_1 \dots S_{n+1} > 0\}}$$

Thus the jump times $J_1 = S_1$, $J_2 = S_1 + S_2$ and so on have the joint density:

$$g(t_1 \dots t_{n+1}) = \lambda^{n+1} e^{-\lambda t_{n+1}} \mathbf{1}_{\{0 \le t_1 \le \dots \le t_n \le t\}}$$

where we use the fact that t_{n+1} is the sum of the first n+1 holding times, the Jacobian of the transformation has determinant 1, and positivity can be rewritten as an order condition.

Now, we take $A \subseteq \mathbb{R}^n$. We must have

$$\mathbb{P}[(J_1 \dots J_n) \in A, X_t = n] = \mathbb{P}[(J_1 \dots J_n) \in A, J_n \leqslant t < J_{n+1}]$$

$$= \int_{(t_1 \dots t_n) \in A, t_n \leqslant t < t_{n+1}} \lambda^{n+1} e^{-\lambda t_{n+1}} \mathbf{1}_{\{0 \leqslant t_1 \leqslant \dots \leqslant t_n \leqslant t_{n+1}\}}$$

$$= \int_{(t_1 \dots t_n) \in A} \int_{t_{n+1} = t}^{\infty} \lambda^{n+1} e^{-\lambda t_{n+1}} \mathbf{1}_{\{0 \leqslant t_1 \leqslant \dots \leqslant t_n \leqslant t\}}$$

$$= \int_{(t_1 \dots t_n) \in A} \lambda^{n+1} e^{-\lambda t} \mathbf{1}_{\{0 \leqslant t_1 \leqslant \dots \leqslant t_n \leqslant t\}}$$

Dividing this by $\mathbb{P}[X_t = n] = e^{-t\lambda} (\lambda t)^n / n!$ yields

$$\mathbb{P}[(J_1 \dots J_n) \in A, X_t = n] = \int_{(t_1 \dots t_n) \in A} \frac{n!}{t^n} \times \mathbf{1}_{\{0 \leqslant t_1 \leqslant \dots \leqslant t_n \leqslant t\}}$$

exactly as required.

1.4**Birth Process**

We now move from Poisson processes in particular to considering a slightly more general process: the birth process.

Definition 1.15 (Birth Process)

For each *i*, let $S_i \sim \text{Exponential}(q_i)$ be independent. Set $J_i = S_1 + \dots + S_i$ and $X_t = i$ if $J_i \leq t < J_{i+1}$. A simple birth process takes $q_i = i\lambda$ for some $\lambda > 0$.

Note: A Poisson process of parameter λ is also a birth process with parameters $q_i = \lambda$ for all *i*.

Note: The simple birth process represents a population of a species, where each individual gives birth with intervals given by Exponential(λ) random variables.

Proposition 1.16 (I)

Let $(T_k)_{k \ge 1}$ be a sequence of independent random variables with $T_k \sim \text{Exponential}(q_k)$ and $0 < q = \sum_k < \infty$. Define $T = \inf_k T_k$. Then we have

- 1. $T \sim \text{Exponential}(q)$.
- 2. The infimum is almost surely attained at a unique point K, with $\mathbb{P}[K = k] = q_k/q$.
- 3. T and K are independent of each other.

Proof: In Example Sheet 1.