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1 Noiseless Coding

1.1 The Coding Problem

The general problem of coding is that of transmitting a message across a communication channel.
For example, if we wish to send an email containing a message m = “Call me!”, we may encode
this as a sequence of binary strings using the standard ASCII format.

Under this code, f(“C”) = 1000011. In fact, each character is mapped to seven binary digits, or
bits. The entire message is the concatenation of these strings: “Call me!” becomes:

f∗(“Call me!”) = 10000111100001110110011011000100000110110111001010100001.

Definition 1.1 (Source, Encoder, Channel, Receiver, Decoder)

More generally, we have a source, often called Alice. She uses an encoder to convert plaintext
messages into encoded messages. These encoded messages are sent through a channel : this
channel may be noisy, and introduce errors into the code. The encoded message is received
by a receiver Bob, who uses a decoder to convert it back into the original plaintext.

Given a source and a channel, described probabilistically, we want to design an encoder and decoder
in order to transmit source information across the channel. We might want certain properties:

1. Economy: we would like to minimise the amount of unnecessary information sent: the code
should not be too long, as it wastes time and money.

2. Reliability: the decoder should be able to successfully decipher the plaintext with very high
probability, or mistakes should be detectable.

3. Privacy: we may want only someone with the decoder to be able to read the message.

Accomplishing this last desideratum is the aim of cryptography in particular, while coding deals
with the first two. How might we achieve these?

Remark 1.2 (Economy and Reliability)

Morse code is economic in that it attempts to minimise message length. This is done by
giving shorter codes to letters which are used more frequently: E = ·, while Q = −− ·−−.

The ISBN system for numbering books is reliable. Each book has a unique ten-digit ISBN:
the first nine digits encode information about the book (its publisher, ID, and region) while
the last digit is a check digit chosen such that 10a1 + 9a2 + · · ·+ 2a9 + a10 ≡ 0 (mod 11).

This has robust error-detection capabilities. For example, a transposition of any two digits
ai and aj will add (j − i)(aj − ai) ∕≡ 0 (mod 11) to the left hand side. This means a single
error can be detected, since the congruence will be broken.

1.2 Communication Channels

Definition 1.3 (Channel)

A communication channel takes letters from an input alphabet Σ1 = {a1, . . . , ar} and emits
letters from an output alphabet Σ2 = {b1, . . . , bs}. It is determined by the probabilities

P[y1 . . . yk emitted | x1 . . . xk input] where xi ∈ Σ∗
1, yi ∈ Σ∗

2.
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Note: The important feature of a channel is that it is not necessarily perfect! Much like in the
real world, where we deal with problems like TV static or data corruption, the channels we will
study are affected by noise.

Definition 1.4 (Discrete Memoryless Channel)

A discrete memoryless channel over a finite alphabet is a channel for which the probabilities

Pij = P[bj received | ai sent]

are the same every time the channel is used, independent of past and future channel use. This
is the memoryless property, while the discrete nature is given by the alphabets.

We often identify the channel with its channel matrix P , which is the r× s matrix with entries pij
equal to those probabilities. Note that the rows of P , but not necessarily its columns, sum to 1,
and all entries are non-negative: we thus say that P is a stochastic matrix.

Example 1.5 (Binary Symmetric/Erasure Channel)

For example, a Binary Symmetric Channel with probability 0 󰃑 p 󰃑 1 of error is a DMC over
the binary alphabet Σ1 = Σ2 = {0, 1}. In particular, any bit sent has a probability p of being
flipped by the channel due to noise. This can be seen in the below diagram.

0

1

1− p

1− p

p

0

1

P =

󰀕
1− p p
p 1− p

󰀖

Usually, we assume p < 0.5. If p > 0.5, then we can just pre-flip the bits sent to reduce
the error probability (since any bit is likely flipped back by the channel). If p = 0.5, then
every single bit received is equally likely to be 0 and 1, independently of what was actually
transmitted, so the channel is entirely useless (pure noise).

A Binary Erasure Channel is similar, taking Σ1 = {0, 1} but Σ2 = {0, 1, *}, with the *

understood to be an erasure. Each bit transmitted has a probability 0 󰃑 p 󰃑 1 of being
erased, making it unreadable, and is transmitted correctly otherwise (never flipped), giving:

0

1

1− p

1− p

p

0

1

P =

󰀕
1− p p 0
0 p 1− p

󰀖
*

where the columns correspond to 0, *, and then 1.
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Definition 1.6 (Capacity)

The capacity of a channel is the highest rate at which information can be reliably transmitted
over the channel. Here, the rate is measured as units of information per unit time: for a binary
channel, this might be the number of decoded bits per transmitted bit. High reliability is
achieved by an arbitrarily low probability of error.

1.3 Strings and Alphabets

We frequently work with alphabets, which are simply sets of elements called letters or characters.
These are the building blocks of a language: the input alphabet of a code is the set of atoms which
are encoded into something else.

Definition 1.7 (String, Concatenation, Length)

For an alphabet Σ, we define the set of Σ-strings to be Σ∗ =
󰁖

n󰃍0 Σ
n. These are usually

written as concatenations rather than tuples, so that the set of binary alphabet strings is

Σ∗
01 = {ε, 0, 1, 00, 01, 10, 11, 000, 001, 010, 011, 100, 101, 110, 111, 0000, 0001, . . .}

The length of a string is the number of letters contained. Here ε is the empty string with
length 0. If x = x1x2 . . . xr and y = y1y2 . . . ys are Σ-strings, their concatenation is given by
xy = x1 . . . xry1 . . . ys.

For two alphabets Σ1 and Σ2, a code is a function f : Σ1 → Σ∗
2. The strings {f(x) : x ∈ Σ1}, or

the image of f , are called codewords.

Example 1.8 (Polybius Square)

For example, the Polybius Square is a cipher developed by Ancient Greek polymath Polybius,
who created a way to encode Greek as numbers.

The input alphabet Σ1 was the 24 Greek letters α to ω, while the output alphabet Σ2 was
the set {1, 2, 3, 4, 5}. Each letter was mapped to precisely two digits from 1 to 5 for easy
transmission (using every pair except 55). This made the codewords the set

{1 . . . 5}2 = {11, 12, 13, 14, 15, 21, 22, . . . 52, 53, 54} .

Note: For English-language codes, we do not necessarily have Σ1 being {a . . . z} the set of letters.
The domain of the code function is the set of atoms of the code, which is often pairs of letters, or
even more commonly entire words.

We apply a code by encoding x1x2 . . . xn ∈ Σ∗
1 as f(x1)f(x2) . . . f(xn) ∈ Σ∗

2. This extends f the
code function from atoms to entire words in the input language, which we call f∗ : Σ∗

1 → Σ∗
2.

However, not every function f : Σ1 → Σ∗
2 works as a code.

Definition 1.9 (Decipherable)

A code f is decipherable if f∗ is injective, so that every string in Σ∗
2 arises from at most

one message. Without this condition, the output of encoding might have come from multiple
possible inputs, and we would have no way of knowing which when decoding it.
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Proposition 1.10 (Decipherability requires injectivity)

A decipherable code f requires f injective. However, this is not a sufficient condition.

Proof: Firstly, if f is not injective, then f(x) = f(y) where x ∕= y ∈ Σ1. But then the encoding
of x and y when treated as members of Σ∗

1 is the same, violating injectivity of f∗.

However, this is not a sufficient condition. Suppose Σ1 = {1, 2, 3, 4} and Σ2 = {0, 1}. Define

f(1) = 0 f(2) = 1 f(3) = 00 f(4) = 01

so that f is injective, but f∗(1112) = 0001 = f∗(34), so f∗ is not. □
How do we construct decipherable codes? There are a few basic properties of codes which guarantee
decipherability (none of these are necessary, but are all sufficient) provided that f is injective.

1. A block code is a code where all codewords are of the same length. For example, the Polybius
cipher had all codewords of length 2, and so it can be decoded by considering the output as
a list of length-2 strings.

2. A comma code reserves one letter in Σ2 to act as the comma, which appears at the end of
every output of f and nowhere else. It thus delimits words in Σ∗

2, so we know where each
letter in the original input to the code was mapped.

3. A prefix-free (or instantaneous) code is a code where no codeword is a prefix of any other
codeword: for any x, y ∈ Σ1, we have f(x) ∕= f(y)α for any α ∕= ε ∈ Σ∗

2.

Note: In fact, block codes and comma codes are special cases of prefix-free codes.

Theorem 1.11 (Kraft’s Inequality)

Let Σ1 = {x1, . . . xm} and |Σ2| = a. Then a prefix-free code f : Σ1 → Σ∗
2 with word lengths

s1, . . . , sm (where |f(xi)| = si) exists if and only if

m󰁛

i=1

a−si 󰃑 1

Proof: (⇒) Consider an infinite tree where each node has a descendents corresponding to the a
letters of Σ2. Then each codeword corresponds to precisely one of these nodes, where the path to
the node spells out the codeword along the branches taken.

Assuming f is prefix-free, no codeword is the ancestor of any other. View the tree as a network,
with water being pumped in at the root, where each node divides the flow equally between each
descendant. The total amount of water extracted at the codewords is therefore the sum of a−si ,
which is at most the total amount of water pumped in, demonstrating the inequality.

0 1

0 1 0 1

...
...

...
...

...
...

...
...
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(⇐) Conversely, we can construct a prefix-free code with word lengths s1 < s2 < · · · < sm. Choose
codewords sequentially, ensuring that any previous codewords are not prefixes. Suppose that the
rth codeword has no valid code available. Then constructing the tree above gives

r−1󰁛

i=1

a−si = 1 =⇒
m󰁛

i=1

a−si > 1

which contradicts our assumption. □

Theorem 1.12 (McMillan / Karush)

Every decipherable code satisfies Kraft’s inequality.

Proof: Let f : Σ1 → Σ∗
2 be a decipherable code with word lengths s1 . . . sm, where s = max si.

For any r ∈ N, we must have 󰀣
m󰁛

i=1

a−si

󰀤r

=

󰀣
rs󰁛

ℓ=1

bℓa
−ℓ

󰀤

where bℓ is the number of ways of choosing r codewords with total length ℓ. Since f is decipherable,
we know that bℓ 󰃑 |Σ2|ℓ = aℓ, since no string can be the encoding of more than one set of codewords.
This means that we can write

󰀣
m󰁛

i=1

a−si

󰀤r

󰃑
󰀣

rs󰁛

ℓ=1

aℓa−ℓ

󰀤
= rs =⇒

󰀣
m󰁛

i=1

a−si

󰀤
󰃑 (rs)1/r

But this is true for any r, and (rs)1/r → 1 as r → ∞. Therefore the left hand side of the inequality
is at most 1, which is exactly the statement of Kraft’s inequality. □
As a result, we mostly restrict our attention to prefix-free codes.

1.4 Mathematical Entropy

Entropy is a measure of “randomness” or “uncertainty”. Suppose a random variable X takes values
x1 . . . xn with probabilities p1 . . . pn, where we have 0 󰃑 pi 󰃑 1 for all i and

󰁓
pi = 1. Loosely, the

entropy H(X) is the expected number of yes/no questions required to determine the value of X.

This is not a formal definition yet: we consider some examples first.

Example 1.13 (Basic Entropy Examples)

Let’s consider X taking values x1 . . . x4.

If p1 = p2 = p3 = p4 = 1/4, then asking precisely two yes/no questions can consistently
determine the value of X. For example, the two questions could be “is X ∈ {x1, x2}?” and
“is X ∈ {x1, x3}?”. Here, this means H(X) = 2 directly.

Now, suppose (p1, p2, p3, p4) = (1/2, 1/4, 1/8, 1/8). Then we could ask the question “X = x1?”
and finish with one question half the time. If the answer is no, we ask “X = x2?” and again
be done half the time (so a quarter overall). Failing that, we ask “X = x3?” and know the
value of X with certainty after three questions.

This gives H(X) = 1× 1/2 + 2× 1/4 + 3× 1/8 + 3× 1/8 = 7/4 < 2, and so the first random
variable is “more random”. This aligns with our intuition.

This gives us enough to write down our formal definition.
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Definition 1.14 (Entropy)

For a random variable X taking values x1 . . . xn with probabilities p1 . . . pn, where we have
0 󰃑 pi 󰃑 1 for all i and

󰁓
pi = 1, the entropy H(X) is defined to be

H(X) = H(p1, . . . , pn) = −
n󰁛

i=1

pi log pi.

Note: In this course, we always consider the logarithm to be defined as log2 (the logarithm with
base 2), rather than the natural logarithm with base e, due to our focus on binary.

Note: This definition breaks down if pi = 0 for some i: in this case, we take pi log pi = 0 as a
convention, since we could have excluded pi and xi for an equivalent distribution.

Corollary: As pi log pi 󰃑 0 for 0 󰃑 pi 󰃑 1, the entropy H(X) 󰃍 0.

Example 1.15 (Entropy of a Biased Coin)

Toss a biased coin which lands heads with probability p and tails with probability 1−p. Then

h(p) = H(p, 1− p) = −p log p− (1− p) log(1− p)

Plotting this, we get an arch-shaped curve with h(0) = h(1) = 0, since the outcome is certain
and thus there is no randomness. The graph is symmetric, which makes sense, and we get a
peak at p = 1/2, which is the case for a fair coin (which is therefore maximal entropy).

We now prove a result which will come up frequently in the study of entropy.

Theorem 1.16 (Gibbs’ Inequality)

Let p = (p1 . . . pn) and q = (q1 . . . qn) be probability distributions. Then

−
n󰁛

i=1

pi log pi 󰃑 −
n󰁛

i=1

pi log qi.

with equality if and only if p = q.

Proof: Since log x = ln(x)/ ln(2), we may prove the equality using ln in place of log, and dividing
through both sides afterwards. Note that lnx 󰃑 x− 1 with equality if and only if x = 1.

Let I = {1 󰃑 i 󰃑 n : pi > 0} be the set of nontrivial indices. Then

ln(qi/pi) 󰃑 qi/pi − 1 ∀ i ∈ I.

and therefore we have
󰁛

i∈I

pi ln(qi/pi) 󰃑
󰁛

i∈I

qi −
󰁛

i∈I

pi =
󰁛

i∈I

qi − 1 󰃑 0

Rearranging this inequality yields

−
󰁛

i∈I

pi ln pi 󰃑 −
n󰁛

i=1

pi ln pi 󰃑 −
n󰁛

i=1

pi ln qi

as required. Equality is only possible if we had equality in the first line, with all i ∈ I satisfying
ln(qi/pi) = qi/pi − 1 =⇒ qi/pi = 1 =⇒ qi = pi as desired, and thus the proof holds. □
Corollary: H(p1 . . . pn) 󰃑 log n with equality if and only if pi = 1/n for all i.



9 · Coding and Cryptography Avish Kumar

1.5 Optimal Noiseless Coding

Recall that the coding problem considers alphabets Σ1 and Σ2 of sizes m, a 󰃍 2 respectively. When
considering a channel, we model the source as a sequence of random variables X1, X2 . . . which
take values in Σ1.

Definition 1.17 (Memoryless Source)

A Bernoulli (or memoryless) source is a sequence X1, X2, . . . of independently and identically
distributed random variables.

Definition 1.18 (Expected Word Length, Optimal Code)

Consider a memoryless source. Let Σ1 = {µ1 . . . µm} and define pi = P[X1 = µi]. The
expected word length S of a code f : Σ1 → Σ∗

2 with word length s1 . . . sm is therefore

E[S] =
m󰁛

i=1

pisi

The code f is then said to be optimal if it has the shortest possible expected word length
among decipherable codes: that is, if it minimises E[S].

This brings us to one of the most important results in information theory.

Theorem 1.19 (Shannon’s Noiseless Coding Theorem)

The expected word length of an optimal decipherable code f : Σ1 → Σ∗
2 satisfies

H(X)

log(a)
󰃑 E[S] <

H(X)

log(a)
+ 1.

This theorem was proved in 1948 by Claude Shannon, the father of information theory. It is also
known by several other names, like Shannon’s Source Coding Theorem for Symbol Codes.

Proof: The lower bound is given by combining Gibbs’ and Kraft’s inequalities (1.16 and 1.11),
taking qi = a−si/c, where c =

󰁓
a−si 󰃑 1 is such that

󰁓
qi = 1. Then

H(X) = −
m󰁛

i=1

pi log pi

󰃑 −
m󰁛

i=1

pi log qi (by Gibbs’)

= −
m󰁛

i=1

pi log(a
−si/c)

= log a

m󰁛

i=1

pisi +

m󰁛

i=1

pi log c

= E[S]× log a+ log c

󰃑 E[S]× log a

where the last line follows by c 󰃑 1 implying log c 󰃑 0. Dividing through by log a yields the result.
We achieve this lower bound only if qi = pi, that is if pi = a−si for some integers si for all p.

In fact, this lower bound must hold for all decipherable codes, by McMillan / Karush (1.12).
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For the upper bound, we take si = ⌈− loga pi⌉. We have si < − loga pi + 1 =⇒ a−si 󰃑 pi. This
means we satisfy Kraft’s inequality (1.11), since

m󰁛

i=1

a−si 󰃑
m󰁛

i=1

pi = 1

and therefore there is a prefix-free code with word lengths s1 . . . sm. Also,

E[S] =
m󰁛

i=1

pisi <

m󰁛

i=1

pi(− loga pi + 1) =
H(X)

log a
+ 1,

so our upper bound holds. □

Example 1.20 (Shannon-Fano Coding)

This is an example of a code which follows from the above proof. We set si = ⌈− loga pi⌉ and
construct a prefix-free code with word lengths s1 . . . sm sorted in ascending order, ensuring
that previous codewords are not used as prefixes.

Suppose our source emits words µ1 . . . µ5 with probabilities 0.4, 0.2, 0.2, 0.1, and 0.1. Then
we construct the binary Shannon-Fano code (with a = 2) by taking si = ⌈− log2 pi⌉, which is
equal to 2, 3, 3, 4, and 4 respectively.

We then have a lot of freedom. At each stage, we may choose anything which does not contain
a previous word as a prefix. For example, set µ1 󰀁→ 00. Then we may choose µ2 󰀁→ anything
of length 3 which does not begin 00, say 010. Similarly, µ3 󰀁→ 100, then µ4 󰀁→ 1100 and lastly
µ5 󰀁→ 1110, which is a prefix-free and thus decipherable code.

The expected word length E[S] = 2.8. For comparison, the entropy H(X) ≈ 2.122.

Note: The Shannon-Fano code is not always optimal. However, the next one is!

Example 1.21 (Huffman Coding)

We define Huffman Coding inductively. For simplicity, we take the binary case a = 2 again.
Order the pi in descending order p1 > · · · > pm. Now:

1. If m = 2, then assign s1 = 0 and s2 = 1.

2. If m > 2, then find the Huffman code f ′ for m − 1 words: µ1 . . . µm−2 emitted with
probabilities p1 . . . pm−2, and a new word ν with probability pm−1 + pm. Then, assign
words µ1 . . . µm−2 the same codes, and set f(µm−1) = f ′(ν)0 and f(µm) = f ′(ν)1.

This gives a prefix-free code. When some of the pi are equal, then we can choose how to order
them, so Huffman codes are not necessarily unique. In our previous example, this gives:

0.4

0.2

0.1

0.1

1

01

000
0.2

0010

0011

0.4

0.2

0.2

1

01

000
0.2

001

0.4

0.4

1

00

01
0.2

0.6

0.4

0

1

µ1

µ2

µ3

µ4

µ5

Now, E[S] = 2.2: notably better than the Shannon-Fano code and remarkably close to H(X).

Let us prove an auxiliary lemma first to show the optimality of the Huffman scheme.
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Proposition 1.22 (Sorting and Almost-Equality)

Suppose that µ1 . . . µm are emitted with probabilities p1 . . . pm. Let f be an optimal prefix-free
code with word lengths s1 . . . sm. Then

1. If pi > pj , then si 󰃑 sj .

2. There are two codewords of maximal length which are equal up to the last letter.

Proof: (1) is obvious: simply swap the codewords f(µi) and f(µj). This strictly decreases the
expected word length, contradicting the optimality of f .

(2) is less obvious. Suppose it is false. Then either there is only one codeword of maximal length,
or any two codewords of maximal length differ before the last digit. In either case, remove the last
letter of each codeword of maximal length. This maintains the prefix-free condition, and shortens
the expected word length, again contradicting the optimality of f . □
Note: Shannon-Fano satisfies the first of these properties, but not necessarily the second. In our
example, f(µ4) = 1100 and f(µ5) = 1110 did not satisfy this condition.

Now, we may prove our target theorem.

Theorem 1.23 (Huffman Coding Optimal)

The Huffman coding scheme is optimal (1.18): for words µ1 . . . µm emitted with probabilities
p1 . . . pm, it minimises the expected word length E[S].

Proof: We prove this for the binary a = 2 case by showing via induction on m that any Huffman
code of size m is optimal. The m = 2 case is obvious: the codewords 0 and 1 are minimal.

Suppose m > 2. The inductive source emits µ1 . . . µm−2 with probabilities p1 . . . pm−2, and a new
word ν with probability pm−1 + pm. The Huffman code fm−1 is optimal for this source. Now, we
construct the Huffman code fm of size m by extending fm−1. The expected word length satisfies:

E[Sm] = E[Sm+1] + pm−1 + pm

Let f ′
m be an optimal code for Xm which is prefix-free. Proposition 1.22 then yields that the

codewords associated with µm−1 and µm are of maximal length and differ only in the last letter.
Say these are y0 and y1 for some string y ∈ Σ∗

2. We define a code f ′
m−1 for Xm−1 with

f ′
m−1(µi) = f ′

m(µi) : 1 󰃑 i 󰃑 m− 2,

f ′
m−1(ν) = y.

Then f ′
m−1 is a prefix-free code and the expected-word length satisfies

E[S′
m] = E[S′

m−1] + pm−1 + pm

By the induction hypothesis, fm−1 is optimal, so E[Sm−1] 󰃑 E[S′
m−1]. Putting this all together,

we obtain E[Sm] 󰃑 E[S′
m]: that is, fm has word length less than or equal to that of an optimal

code for the source Xm. Therefore fm must itself be optimal, as required. □
Note: Not all optimal codes are Huffman, but (from the proof of the above) it can be seen that
for any optimal sequence of word lengths s1 . . . sm associated with p1 . . . pm, there is a Huffman
code which results in these word lengths.



12 · Coding and Cryptography Avish Kumar

1.6 Coding Sequences

In Shannon’s Noiseless Coding Theorem (1.19) we don’t always attain the lower boundH(X)/ log a.
However, by coding longer sequences we can make our code more efficient and closer to this bound.

Example 1.24 (Motivation for Coding Sequences)

Suppose we have a memoryless (1.17) source which emits µ1 with probability 3/4 and µ2

otherwise. The optimal binary code assigns µ1 󰀁→ 0 and µ2 󰀁→ 1.

Consider strings of length 2. We have E[S2] = 2, since every two-letter input sequence codes
to precisely two output letters. Can we beat this? Yes, if we code strings of length 2 directly.

Consider the 4 “letters” µ1µ1, µ1µ2, µ2µ1, and µ2µ2. These have probabilities 9/16, 3/16,
3/16, and 1/16 respectively. If we apply the Huffman algorithm, we obtain word lengths of
1, 2, 3, and 3, which maps to an expected word length of E[S2] = 27/16 < 2.

This saving came from mapping µ1µ1, which is a very common sequence, to just one bit.
This would not have been possible without word combination! The idea is thus to split our
sequences into high probability typical sequences and low probability atypical sequences.

If a coin with P[Heads] = p is tossed N times, we expect approximately Np heads and (1 − p)N
tails. A particular sequence of precisely this many heads and tails has probability:

ppN (1− p)(1−p)N = 2N(p log p+(1−p) log(1−p)) = 2−NH(X).

where X is the result of an individual coin toss. So with high probability, we will get a typical
sequence, and its probability will be close to 2−NH(X). Can we formalise this idea?

Definition 1.25 (Asymptotic Equipartition Property)

A source X1, X2, X3 . . . satisfies the Asymptotic Equipartition Property (AEP) with constant
H 󰃍 0 if for all ε > 0 we have that ∃N s.t. (∀n > N, ∃Tn ⊆ Σn) with:

1. P[(X1 . . . Xn) ∈ Tn] > 1− ε

2. 2−n(H+ε) 󰃑 p(x1, . . . , xn) 󰃑 2−n(H−ε) for all (x1, . . . , xn) ∈ Tn

This Tn is called a typical set. We then encode the high probability typical sequences carefully
and encode the low probability atypical sequences arbitrarily.

Remark 1.26 (AEP Helpful)

For any given ε > 0 and sufficiently large n, we have p(x1, . . . , xn) 󰃍 2−n(H+ε) for all x ∈ Tn.
Summing over these x, we obtain:

1 󰃍 P[(X1 . . . Xn) ∈ Tn] 󰃍 2−n(H+ε) |Tn| =⇒ |Tn| 󰃑 2n(H+󰂃)

We encode each of these sequences into some r-length string, so we require ar > |Tn|. For
atypical sequences, we encode by prefixing a string of length r (not already used) with a string
of length n. Then

E[Sn] 󰃑
⌈n(H + ε)⌉

log a
+ δn

This is close to the Shannon bound (1.19)! We get E[Sn]/n 󰃑 H/ log a + δ′, where we can
make the δ′ small, yielding a compact encoding of n-strings.

Now, we consider a property of sources, related to our intuition about the AEP.



13 · Coding and Cryptography Avish Kumar

Definition 1.27 (Reliable Encodability, Information Rate)

A source X1, X2, . . . is reliably encodable at rate r if for each n there is An ⊆ Σn with:

1. log |An|× (1/n) → r as n → ∞.

2. P[(X1, . . . , Xn) ∈ An] → 1 as n → ∞

The information rate H of a source is the infimum of all rates at which it is reliably encodable.
Then nH is roughly the number of bits required to encode (X1, . . . , Xn).

Theorem 1.28 (Shannon’s First Coding Theorem, 1948)

If a source satisfies the asymptotic equipartition property (1.25) with constant H, then the
source has information rate (1.27) equal to H.

Proof: Omitted. □
We now present an alternative definition of the asymptotic equipartition property (1.25).

Definition 1.29 (Asymptotic Equipartition Property)

A source X1, X2, . . . satisfies the AEP if for some H 󰃍 0, we have

− 1

n
log p(x1, . . . , xn)

P−→ H as n → ∞

where the arrow refers to convergence in probability. This allows the source to take very
different values for large n, but only on a set of small probability.

Remark 1.30 (Weak Law of Large Numbers)

Recall that the weak law of large numbers states that for any independently and identically
distributed sequence of random variables X1, X2, . . . with finite expected value E[Xi] = µ:

1

n

n󰁛

i=1

Xi
P−→ µ as n → ∞.

We can apply this to our toy model of a memoryless (1.17) source, since p(X1) are iid. random
variables, and p(x1, . . . , xn) = p(x1)× · · ·× p(xn), yielding:

− 1

n
log p(x1, . . . , xn) = − 1

n

n󰁛

i=1

log p(xi)
P−→ E[− log p(X)] = H(X) as n → ∞.

Thus any memoryless source satisfies the AEP with constant H = H(X).

Corollary: A memoryless source has information rate equal to its entropy H(X).
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2 Error Control Codes

2.1 Binary Codes

Recall our initial schematic of a code (Definition 1.1). In the previous chapter, we considered the
problem of sending coded messages when the channel was noiseless, that is when we had a perfect
guarantee that the message we sent would be accurately received. Now, we consider the case when
this does not hold, because our channel is noisy. Some such channels can be found in Example 1.5.

Definition 2.1 (Binary Code)

An [n,m] binary code is a subset C ⊆ {0, 1}n of size m. We say that C has length n. The
elements of C are called codewords.

Note: By this definition, since all elements of C have length n, C is a block code, where all m of
the codewords are of equal length. As seen previously, all block codes are prefix-free.

We use an [n,m]-code to send one of m possible messages through a binary symmetric channel
(1.5) making n uses of the channel.

Definition 2.2 (Information Rate)

The information rate of an [n,m] binary code C is defined as ρ(C) = log(m)/n.

Corollary: Since C ⊆ {0, 1}n is of size m, ρ(C) 󰃑 1, with equality if and only if C = {0, 1}n (or
equivalently if m = 2n). Similarly, a code of size m = 1 has information rate 0.

The error rate depends on the decoding rule. We consider three possible rules:

1. The ideal observer decoding rule decodes x ∈ {0, 1}n as the codeword c ∈ C which maximises
the probability P[c sent | x received].

2. The maximum likelihood decoding rule decodes x ∈ {0, 1}n as the codeword c ∈ C which
maximises the probability P[x received | c sent].

3. The minimum distance decoding rule decodes x ∈ {0, 1}n as the codeword c ∈ C which has
the fewest digits changed: that is, minimising # {1 󰃑 i 󰃑 n : xi ∕= ci}.

Note: For each of these, some convention is needed in case of a tie (when the codeword chosen is
not unique). We could choose one at random, or arbitrarily yet consistently, or ask for the message
to be sent again.

Proposition 2.3 (Decoder Agreement 1)

If all messages in C are equally likely to be sent, then the ideal observer decoder method and
the maximum likelihood decoder method agree on how to decode any received message.

Proof: By Bayes’ rule, we can calculate the probability:

P[c sent | x received] =
P[c sent, x received]

P[x received]
=

P[c sent]

P[x received]
× P[x received | c sent]

but having received any x, this last fraction is equal for all c, and so the two probabilities must be
equal to each other. The methods thus assign equal “scores” to all codewords, so must agree. □
Now, we use the minimum distance rule as the basis for a definition.
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Definition 2.4 (Hamming Distance)

For x, y ∈ {0, 1}n, the Hamming distance between x and y is the scoring rule used by the
minimum distance observer d(x, y) = # {1 󰃑 i 󰃑 n : xi ∕= ci}. Notice that this is a metric!

Proposition 2.5 (Decoder Agreement 2)

If p < 1/2, then the maximum likelihood decoder method and the minimum distance decoder
method agree on how to decode any received message.

Proof: Suppose d(x, c) = r. Then we can calculate the probability explicitly as:

P[x received | c sent] = pr(1− p)r−n = (1− p)n ×
󰀕

p

1− p

󰀖n−r

When p < 1/2, this last fraction is less than 1. Therefore choosing c to maximise this probability
is the same as choosing c to minimise d(x, c). □
Note: As mentioned in 1.5, we usually take p < 1/2 in general. If p > 1/2, then our bit is flipped
most of the time, so it would make more sense to send the opposite bit, in which case our bit is
now mostly correct (as if p < 1/2). If p = 1/2, we have an entirely useless channel which simply
outputs a stream of random bits with no correlation to what we sent, which is uninteresting.

Example 2.6 (Encoding Codewords)

Suppose we have the codewords “000” and “111” which are sent with probabilities α = 0.9
and 1− α = 0.1 respectively. We use a BSC with error probability p = 1/4.

If we receive the string “110”, how should we decode it?

Clearly, the minimum distance decoder (and therefore the maximum likelihood decoder too,
by Proposition 2.5) will decode the string as “111”.

However, the ideal observer decoder will calculate the odds ratio as:

9 : 1󰁿 󰁾󰁽 󰂀
prior of 000 vs 111

× (3/64) : (9/64)󰁿 󰁾󰁽 󰂀
odds of two flips vs one flip

= 3 : 1󰁿 󰁾󰁽 󰂀
posterior odds ratio

giving a probability of 3/4 that “000” was sent, and thus choosing it as the most likely of the
two codewords to have been sent, having received “110”.

Note: The ideal observer rule is also known as the minimum error rule. It seems much better,
but it requires knowing the prior probabilities of each codeword being sent. From now on, we use
the other two methods, since they are equivalent.

Definition 2.7 (Error Detecting/Correcting)

C is d-error detecting if changing at most d letters of a codeword never produces a different
codeword. Equivalently, this is the minimum separation distance of C.

C is e-error correcting if the knowledge that the string received has at most e errors is sufficient
to determine with certainty which codeword was sent.

We often consider the repetition code of length n. Here, the codewords we want to send are just
the n-long strings of all 0s and all 1s, where we simply repeat a single bit we want to send. This is
an [n, 2] binary code. We can detect n− 1 errors, and correct anything less than n/2 errors, which
is fairly good for a code! Unfortunately, the information rate (2.2) is only 1/n.
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Note: The information rate seems like a good definition! In this example we used n bits of channel
space to send 1 bit of actual information, and had an information rate of 1/n. In fact, this holds
in general: the information rate can be thought of as the “bits per bit” of a code.

Example 2.8 (Simple Parity Check Code)

The simple parity check code of length n, also known as the paper tape code, is another common
code example. Here, we view the first n − 1 bits as the actual information to communicate,
and use the last bit as a free bit to enforce the rule that the total number of 1s in the codeword
is even. That is:

C =

󰀫
(x1 . . . xn) ∈ {0, 1}n :

n󰁛

i=1

xi ≡ 0 (mod 2)

󰀬

is the set of codewords, which is an [n, 2n−1] code. It is 1-error detecting, but it cannot correct
any errors (0-error correcting). Its information rate is 1− 1/n, which is a lot better.

Note: Suppose we change our code C to use the same permutation to reorder each codeword.
Then we get a code with the same information rate, error detection capabilities, and so forth. We
say such a code is permutationally equivalent.

In the 1940s, Richard Hamming was working at Bell Labs on an old computer which used punch
cards to store and run code. Since users of punch cards were prone to making errors, there were
safety checks built in to the machines, so that they could detect malformed input, and loudly alert
the operators with bright flashing lights and loud noises. Hamming was frustrated by this, and
was said to have remarked “Damn it, if the machine can detect the error, why can’t it correct it?”

This experience influenced him to create the original error-correcting Hamming code.

Example 2.9 (Hamming’s Original 1950 Code)

Let C ∈ {0, 1}7 be defined by the 7-tuples which satisfy the congruences:

c1 + c3 + c5 + c7 ≡ 0 (mod 2)

c2 + c3 + c6 + c7 ≡ 0 (mod 2)

c4 + c5 + c6 + c7 ≡ 0 (mod 2)

Since there are three of these congruences, the size of C is 27−3 = 16. This means that C is
a [7, 16] code, and thus has information rate 4/7.

Suppose we receive some x ∈ {0, 1}7. Then we form the syndrome zx = (z1, z2, z4), where:

z1 = x1 + x3 + x5 + x7

z2 = x2 + x3 + x6 + x7

z4 = x4 + x5 + x6 + x7

with addition taken modulo 2. For any c ∈ C, by construction we have zc = (0, 0, 0).

If d(x, c) = 1 for some c ∈ C, then the place where they differ is given by z1+2z2+4z3. This
is because if x = c + ei, where ei is a vector with all 0s except for a 1 in the ith place, then
the syndrome of x is the syndrome of ei, which is the binary expansion of i for all 1 󰃑 i 󰃑 7.

This is because, for example, x3 appears in the definitions of z1 and z2 only, since 3 = 1102
and so only bits 1 and 2 would be affected.

Thus our code C corrects any single error! However, it doesn’t correct two: for example, the
string 1110000 ∈ C could be corrupted to 1000000, which would be decoded as 0000000.
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Now recall that in the definition of the Hamming distance (2.4), we stated that this was a metric.
We now prove this formally.

Proposition 2.10 (Hamming Metric)

The Hamming distance d(x, y) = # {1 󰃑 i 󰃑 n : xi ∕= ci} is a metric on {0, 1}n.

Proof: Clearly d(x, y) 󰃍 0, as the count of a set. If d(x, y) = 0, then x and y differ in zero places,
and so they must be the same: conversely, d(x, x) is clearly 0. Also, the symmetry of the definition
gives us the relation d(x, y) = d(y, x). So we only need to show the triangle inequality, using:

{1 󰃑 i 󰃑 n : xi ∕= zi} ⊆ {1 󰃑 i 󰃑 n : xi ∕= yi} ∪ {1 󰃑 i 󰃑 n : yi ∕= zi}

which yields d(x, z) 󰃑 d(x, y)+d(y, z). Equivalently, it is the sum metric on n copies of the discrete
metric on {0, 1}, which is therefore a metric itself. □

Definition 2.11 (Minimum Distance)

The minimum distance of a code C ⊆ {0, 1}n is the smallest Hamming distance between two
distinct codewords. An [n, m] code with minimum distance d is sometimes referred to as an
[n, m, d] code. For example, Hamming’s original code is a [7, 16, 3] code.

Note: We have m 󰃑 2n, with equality if and only if C = {0, 1}n. This is called the trivial code.

From this definition, we can prove some bounds on how “good” a code can be (2.7).

Proposition 2.12 (Error Bounds)

Let C be a code with minimum distance d = d(C). Then:

(i) C can always detect up to d− 1 errors, but not necessarily d errors.

(ii) C can always correct
󰀇
d−1
2

󰀈
errors, but not necessarily more.

Proof: Suppose x ∈ {0, 1}n and c ∈ C with 1 󰃑 d(x, c) 󰃑 d − 1. Then x /∈ C, as otherwise the
minimum distance would not be d. Therefore C can detect up to d − 1 errors. But if c1, c2 ∈ C
with d(c1, c2) = d, then c1 can be corrupted to c2 with just d errors, which the code would not be
able to detect. So d errors cannot always be detected.

Now, let e =
󰀇
d−1
2

󰀈
, so e 󰃑 d−1

2 󰃑 e+ 1, or equivalently 2e < d 󰃑 e+ 1.

Then take x ∈ {0, 1}n. If there is some c1 ∈ C with d(x, c1) 󰃑 e, we want to show d(x, c2) > e for
all c2 ∕= c1 in C. This is given directly by the triangle inequality:

d(x, c2) 󰃍 d(c1, c2)− d(x, c1) 󰃍 d− e > e.

Thus C is e-error correcting. However, take c1, c2 ∈ C with d(c1, c2) = d. Let x differ from c1 in
precisely e+ 1 places where c1 and c2 also differ. Then d(x, c1) = e+ 1, and we have

d(x, c2) = d− (e+ 1) 󰃑 e+ 1

so both c1 and c2 can be corrupted to x with e+1 errors. Therefore C cannot correct e+1 errors,
and so our bounds are tight. □
Corollary: The repetition code is an [n, 2, n] code, so detects n− 1 errors and corrects

󰀇
n−1
2

󰀈
.

Corollary: The paper tape code is an [n, 2n−1, 2] code, so detects one error but corrects none.

Corollary: The original Hamming code is a [7, 16, 3] code, as mentioned earlier.
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Given an [n, m, d] code, we might want to transform it: making the code “safer” by enabling it to
detect or correct more errors, but at the cost of increasing the length of the codewords. Conversely,
we may want to go the other way, sacrificing robustness for efficiency.

Definition 2.13 (Parity Extension, Punctured Code, Shortened Code)

Let C be an [n, m, d] code. Then the parity extension of C is

C̄ =

󰀫
(c1, c2, . . . cn,

n󰁛

i=1

ci) : (c1 . . . cn) ∈ C

󰀬
,

where the addition is taken modulo 2. That is, the new code is the old code, where each of
the codewords has an extra bit added as a parity check. This makes C̄ an [n+1, m, d′] code,
where d 󰃑 d′ 󰃑 d+ 1, depending on the parity of d.

This code is longer but potentially more error-detecting. Conversely, the punctured code goes
the other direction, and deletes the ith letter from each codeword. This forms a code which
is one bit shorter, but possibly combines two codewords, unless no two codewords differ only
in this letter. A sufficient condition to ensure that this does not happen is to enforce d 󰃍 2.

Similarly, we define the shortened code for a fixed a ∈ {0, 1} and 1 󰃑 i 󰃑 n. We take all the
codewords in C, and remove the ith letter, given that it is an a. For some choice of a, this
will retain at least ⌈m/2⌉ codewords from the original C.

2.2 Bounds on Codes

Now, we try and find bounds on codes with certain nice or maximal properties. Recall that the
Hamming distance (2.4) is a metric. As in any metric space, this allows us to define a ball.

Definition 2.14 (Hamming Ball)

Let x ∈ {0, 1}n with r 󰃍 0. The closed Hamming Ball with centre x and radius r is:

Br(x) = B(x, r) = {y ∈ {0, 1}n : d(x, y) 󰃑 r}

The volume of the ball is the size of the set. This is given by:

V (n, r) =

r󰁛

i=0

󰀕
n

i

󰀖

which is independent of x.

This definition allows us to quantify precisely how error correcting (2.7) a code can be.

Proposition 2.15 (Hamming’s Bound)

If C ⊆ {0, 1}n is e-error correcting, then we must have

|C| 󰃑 2n

V (n, e)
.

Proof: Since C is e-error correcting, the Hamming balls Be(c) are pairwise disjoint for each c ∈ C.
(If not, then there would be x ∈ Be(c1)∩Be(c2): that is, a string obtained via at most e errors on
two different words.) Then |C|× V (n, e) 󰃑 2n, which proves the bound. □
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Note: An [n, m] code (2.1) which can correct e errors is called perfect if this bound is tight: that
is, if we have m = 2n/V (n, e).

Corollary: If 2n/V (n, e) /∈ Z then no perfect e-error correcting code of length n can exist.

Corollary: Hamming’s original [7, 16, 3] code (2.9) can correct e = 1 errors, so we can calculate
27 = 128 and V (n, e) = 1 + 7 = 8, so as 16 = 128/8 the code is perfect.

Corollary: Since a perfect e-error correcting code has balls which cover the entire set, any instance
of e+ 1 errors will always be in another ball, and therefore must be decoded incorrectly.

Definition 2.16 (Maximal Code Size)

We define the maximal code size with parameters n and d to be

A(n, d) = max {m ∈ N0 : there exists some [n, m, d] code} .

Corollary: A(n, 1) = 2n: any distance is allowed, so we can have all codewords.

Corollary: A(n, n) = 2: every codeword must be distinct in every bit, so there can be only two.

Proposition 2.17 (Gilbert-Shannon-Varshamov Bound)

For any n and d, we have the GSV lower bound and the Hamming upper bound :

2n

V (n, d− 1)
󰃑 A(n, d) 󰃑 2n

V (n,
󰀇
d−1
2

󰀈
)
.

Proof: (GSV) Let C ⊆ {0, 1}n be a code of length n and minimum distance d of maximal size.
Then there cannot be x ∈ {0, 1}n with d(x, c) 󰃍 d for all c ∈ C, otherwise we could take C ∪ {x}
to be a larger code.

Thus the union of the B(c, d− 1) cover {0, 1}n, and so we must have 2n 󰃑 |C|× V (n, d− 1), since
the number of total strings of length n is at most the number covered by |C| balls, each of size
V (n, d− 1). This proves the bound. □
Note: We omit the proof of the upper bound, known as Hamming’s bound.

Example 2.18 (GSV Bound)

Take n = 10 and d = 3, so that 2n = 1024. Then we have:

V (n, 1) = 1 + 10 = 11

V (n, 2) = 1 + 10 + 45 = 56

=⇒ 1024/56 󰃑 A(10, 3) 󰃑 1024/11.

These bounds work out to around 18.3 and 93.1 respectively, so we have

19 󰃑 A(10, 3) 󰃑 93.

So these bounds are not very tight! In fact, A(10, 3) = 72, discovered in 1999.

Note: In general, calculating specific values of A(n, d) is an open problem.

There also exist asymptotic versions of these bounds! Loosely, as n grows to infinity, we wish to
find the maximal size of a code of length n which can correct a fraction δ of the errors.
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Proposition 2.19 (Asymptotic GSV)

For 0 < δ < 1/2, we define the limiting code size to be

α(δ) = lim sup
n∈N

n−1 logA(n, δn).

Now, recall from 1.15 the notation h(δ) = −δ log δ − (1 − δ) log(1 − δ). Then we must have
the asymptotic bounds:

1− h(δ) 󰃑 α(δ) 󰃑 1− h(δ/2).

In particular, we claim that:

(i) log V (n, ⌊nδ⌋) 󰃑 n× h(δ), and

(ii) logA(n, ⌊nδ⌋) 󰃍 n× (1− h(δ)).

Proof: (i) Since 0 < δ < 1/2, δ < 1− δ. Now, notice that we have

1 = (δ + (1− δ))n =

n󰁛

i=0

󰀕
n

i

󰀖
δi(1− δ)n−i

󰃍
⌊nδ⌋󰁛

i=0

󰀕
n

i

󰀖
δi(1− δ)n−i

= (1− δ)n
⌊nδ⌋󰁛

i=0

󰀕
n

i

󰀖󰀕
δ

1− δ

󰀖i

󰃍 (1− δ)n
⌊nδ⌋󰁛

i=0

󰀕
n

i

󰀖󰀕
δ

1− δ

󰀖nδ

= δnδ(1− δ)n(1−δ)

⌊nδ⌋󰁛

i=0

󰀕
n

i

󰀖

= δnδ(1− δ)n(1−δ)V (n, ⌊nδ⌋)

Taking logs then gives us the inequality

0 󰃍 nδ log δ + n(1− δ) log(1− δ) + log V (n, ⌊nδ⌋)
nh(δ) 󰃍 log V (n, ⌊nδ⌋).

(ii) Now, the GSV bound gives us:

A(n, ⌊nδ⌋) 󰃍 2n

V (n, ⌊nδ⌋ − 1)
󰃍 2n

V (n, ⌊nδ⌋)
=⇒ logA(n, ⌊nδ⌋) 󰃍 n− log V (n, ⌊nδ⌋)

From subtracting the first inequality from n, we get:

n− nh(δ) 󰃑 n− log V (n, ⌊nδ⌋)
=⇒ n(1− h(δ)) 󰃑 n− log V (n, ⌊nδ⌋) 󰃑 logA(n, ⌊nδ⌋)

This proves the desired inequality! □
Heuristically, we can interpret δ as the fraction of errors which our code can correct. A(n, ⌊nδ⌋) is
then the maximum size of a code with length n which is capable of this, and the limit supremum
bounds the asymptotic behaviour of such a code.
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2.3 Operational Channel Capacity

Now, we consider channels again, in order to describe properties of channels by considering the
best possible codes which can be used to transmit messages across them. As usual, we will mainly
be considering discrete memoryless channels (1.4).

Denote |Σ| = q: usually, we take q = 2 for the output alphabet (that is, a binary code). A code of
length n is then a subset C ⊆ Σn. For each code, a decoding rule is chosen: here, we focus on the
minimum distance rule (2.5).

Definition 2.20 (Operational Channel Capacity)

We define ê(C) = maxc∈C P[error | c sent] to be the maximum error probability of a code C.

A channel can transmit reliably at rate 0 󰃑 R 󰃑 1 if there exists some infinite sequence of
codes C1, C2, . . . with Cn a code of length n and size

󰀇
2nR

󰀈
, such that ê(Cn) → 0 as n → ∞.

The operational capacity of a channel is then the supremum over all rates R such that the
channel can transmit reliably at rate R.

Note: Later, we will define the informational channel capacity (Definition 2.31). In fact, these
two definitions will coincide exactly, which we prove (Theorem 2.32).

Note: The information rate (2.2) of Cn is log⌊2nR⌋/n, which is bounded by and tends to R.

Proposition 2.21 (Error Rate Bound)

Let ε > 0. Consider a BSC (1.5) with error probability p being used to send n binary digits.
Then we must have

lim
n→∞

P[number of errors 󰃍 n× (p+ ε)] = 0.

Proof: Let µ1 . . . µn be a sequence of independent identically distributed random variables, taking
the values representing whether an error occurs in the ith position:

µi =

󰀫
1 ith digit mistransmitted

0 otherwise

Then we have P[µi = 1] = p for all i: in particular, E[µi] = p. The probability

P[number of errors 󰃍 n× (p+ ε)] = P

󰀥
n󰁛

i=1

µi 󰃍 n(p+ ε)

󰀦
󰃑 P

󰀥󰀏󰀏󰀏󰀏󰀏
1

n

n󰁛

i=1

µi

󰀏󰀏󰀏󰀏󰀏 󰃍 p+ ε

󰀦

But the right hand side tends to 0 as n → ∞, by the weak law of large numbers. Therefore the
left hand side must too. □
This allows us to prove a nice result about operational channel capacity.

Proposition 2.22 (Nonzero Channel Capacity)

The operational channel capacity (2.20) of a binary symmetric channel (1.5) with an error
probability of p < 1/4 is not zero.

Proof: We choose δ with 2p < δ < 1/2, and prove that there is reliable transmission (2.20) at a
rate 1− h(δ) > 0. Let Cn be the largest code of length n and minimum distance ⌊nδ⌋. Then:

|Cn| = A(n, ⌊nδ⌋) 󰃍 2n(1−h(δ)) = 2nR

due to Gilbert-Shannon-Varshamov (2.19).
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Replacing Cn by a subcode gives us |Cn| 󰃑
󰀇
2nR

󰀈
with a minimum distance still at least ⌊nδ⌋.

Using minimum distance decoding, we see that the maximum error probability is at most:

ê(Cn) 󰃑 P
󰀗
the BSC makes at least

󰀙
⌊nδ⌋ − 1

2
+ 1

󰀚
errors

󰀘

which is at most the probability it makes at least (nδ − 1)/2 errors. As p < 1/4 we may choose
ε > 0 such that p+ ε < δ/2. Then

nδ − 1

2
= n

󰀕
δ

2
− 1

2n

󰀖
> n(p+ ε)

for sufficiently large n, and this means ê(Cn) is at most the probability of making n(p+ ε) errors.
But by the previous proposition, this tends to 0 as n → ∞, and so ê(Cn) does too.

Therefore there is a sequence of codes such that Cn has length n and size
󰀇
2n(1−h(δ))

󰀈
such that

the maximum error probability ê(Cn) tends to 0.

Thus the channel transmits reliably at rate R = 1 − h(δ) > 0. Therefore it has some operational
channel capacity at least this large: in particular, it is not zero. □
Now, we return to the idea of entropy, and expand our understanding from the basic case of one
variable (1.14) to multiple variables.

Definition 2.23 (Joint Entropy)

Let X and Y be random variables taking values in Σ1 and Σ2. The joint entropy of X and
Y is then given by

H(X,Y ) = −
󰁛

x∈Σ1

󰁛

y∈Σ2

pxy log pxy where pxy = P[X = x, Y = y].

Proposition 2.24 (Joint Entropy Inequality)

The joint entropy is at most the sum of the individual entropies: we have

H(X,Y ) 󰃑 H(X) +H(Y )

with equality if and only if X and Y are independent.

Proof: Let Σ1 = {x1 . . . xm} and Σ2 = {y1 . . . yn}. Define pij = P[X = xi, Y = yj ] like before,
with pi = P[X = xi] and qj = P[Y = yj ]. Then by Gibbs’ inequality (1.16) we have

−
󰁛

i,j

pij log pij 󰃑 −
󰁛

i,j

pij log(piqj) = −
󰁛

i

󰀳

󰁃
󰁛

j

pij

󰀴

󰁄 log pi −
󰁛

j

󰀣
󰁛

i

pij

󰀤
log qj

Notice that the sum across the j of pij is just pi, and the sum across the i is qj . Thus

H(X,Y ) = −
󰁛

i,j

pij log pij 󰃑 −
󰁛

i

pi log pi −
󰁛

j

qj log qj = H(X) +H(Y )

with equality if and only if the two probability distributions coincide, that is pij = piqj for all i
and j. But this is the same as the random variables being independent, proving the result. □
Sometimes, knowing the value of a random variable gives you information about another random
variable. In fact, we can quantify precisely how much information!
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Definition 2.25 (Conditional Entropy)

The conditional entropy of a random variable X given the event {Y = y} is given by:

H(X | Y = y) = −
󰁛

x∈Σ1

P[X = x | Y = y] logP[X = x | Y = y]

The conditional entropy of a random variable X given another random variable Y is:

H(X | Y ) =
󰁛

y∈Σ2

P[Y = y]×H(X | Y = y)

which is the “expected” conditional entropy, given some value of Y .

Proposition 2.26 (Conditional Entropy Equality)

The joint entropy H(X,Y ) is equal to H(X | Y ) +H(Y ).

Proof: Use Bayes’ rule to rewrite the conditional entropy as:

H(X | Y ) = −
󰁛

y∈Σ2

󰁛

x∈Σ1

P[X = x | Y = y]× P[Y = y]× logP[X = x | Y = y]

= −
󰁛

y∈Σ2

󰁛

x∈Σ1

P[X = x, Y = y]× log
P[X = x, Y = y]

P[Y = y]

= −
󰁛

y∈Σ2

󰁛

x∈Σ1

pxy × log pxy +
󰁛

y∈Σ2

󰀣
󰁛

x∈Σ1

pxy

󰀤
× log qj

= H(X,Y )−H(Y )

which proves the result. □
Corollary: H(X | Y ) 󰃑 H(X) with equality if and only if X and Y are independent.

Example 2.27 (Joint and Conditional Entropy)

Suppose we throw a fair six-sided die. Define X to be the value shown, and define

Y =

󰀫
0 X even

1 X odd.

Then H(X,Y ) = H(X), since Y is fully determined by X, and this is log2 6. The entropy of
Y is simply H(Y ) = log2 2 = 1.

Then the conditional entropies are:

1. H(X | Y ) = H(X,Y )−H(Y ) = log 6− 1 = log 3.

2. H(Y | X) = H(X,Y )−H(X) = log 6− log 6 = 0.

Both of these make sense! Given Y , there are 3 possible equally likely values for X. However,
given X, the value of Y is totally determined, so there is no “remaining” randomness.

Note: X and Y having zero covariance is a necessary but not sufficient condition for independence.
However, if H(X | Y ) = H(X), then independence really is always attained!

Note: In the definition of conditional and joint entropy, we did not use the actual values of X and
Y , so we may replace random variables X and Y with vectors x = (x1 . . . xr) and y = (y1 . . . ys).
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Proposition 2.28 (Double Conditional Entropy)

The conditional entropy H(X | Y ) is at most H(X | Y, Z) +H(Z).

Proof: We expand H(X,Y, Z) in two different ways.

1. H(X,Y, Z) = H(Z | X,Y ) +H(X | Y ) +H(Y ).

2. H(X,Y, Z) = H(X | Y, Z) +H(Z | Y ) +H(Y ).

Since the entropy H(Z | X,Y ) 󰃍 0, we must have

H(X | Y ) 󰃑 H(X | Y, Z) +H(Z | Y ) 󰃑 H(X | Y, Z) +H(Z)

which completes the proof. □

Theorem 2.29 (Fano’s Inequality)

Suppose X and Y are random variables taking values in Σ, with |Σ| = m. Let p = P[X ∕= Y ].
Then we must have

H(X | Y ) 󰃑 H(p) + p log(m− 1).

Proof: Let Z be the indicator variable for X ∕= Y , so that E[Z] = P[Z = 0] = 1 − P[Z = 1] = p.
Then by 2.28, we must have:

H(X | Y ) 󰃑 H(X | Y, Z) +H(Z)

Here, H(Z) = h(p). Now, we can take the first term on the right hand side and write:

H(X | Y = y, Z = 0) = 0

H(X | Y = y, Z = 1) 󰃑 log(m− 1)

The first line is because Z = 0 means X = Y = y with certainty: there is no entropy. The second
line is bounded by log(m− 1) because there are m− 1 choices for X remaining, so the maximum
possible entropy is if they are all equally likely. Then

H(X | Y, Z) =
󰁛

y,z

P[Y = y, Z = z]×H(X | Y = y, Z = z)

󰃑
󰁛

y

P[Y = y, Z = 1]× log(m− 1)

= P[Z = 1]× log(m− 1)

which proves the inequality, since P[Z = 1] = p. □
Note: We often interpret X and Y to be the input and output of a channel respectively. Then p
is the probability that the transmission is incorrect.

Definition 2.30 (Mutual Information)

For X and Y random variables, the mutual information is given by

I(X,Y ) = H(X)−H(X | Y ).

This is the amount of information about X conveyed by Y .

Corollary: We can also write this as I(X,Y ) = H(X) +H(Y )−H(X,Y ) 󰃍 0 by 2.26 and 2.24,
so this definition is symmetric with I(X,Y ) = 0 if and only if X and Y are independent.
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2.4 Informational Channel Capacity

We now consider a different definition of the channel capacity, which also measures how good a
channel is at transmitting. In the previous section, we introduced the operational channel capacity
(Definition 2.20), which loosely defines the limiting behaviour of a channel: as the length of codes
grows, the information rate tends to R. Now, we consider the informational channel capacity.

Definition 2.31 (Informational Channel Capacity)

Once again, consider a discrete memoryless channel (1.4). Let X take values in an alphabet
Σ1 of size m, with probabilities p1 . . . pm, and let Y be the random variable representing the
channel’s output when the input is X.

The informational channel capacity is maxX {I(X,Y )}, where this maximum is taken over
all possible random variables X as defined above.

Note: Since this capacity is a maximum and not a property of any particular input random
variable, it depends only on the channel matrix.

Note: We are maximising over all probabilities p ∈ {(p1 . . . pm) : pi 󰃍 0,
󰁓

pi = 1}, which is a
compact set, since it is closed and bounded in Rm. As the function p 󰀁→ I(X,Y ) is continuous,
the maximum is therefore attained by the Extreme Value Theorem.

Theorem 2.32 (Shannon’s Noisy Coding Theorem)

The operational channel capacity (2.20) and informational channel capacity (2.31) are in fact
the same for all discrete memoryless channels.

Note: This is Shannon’s second coding theorem, with the first being the noiseless version (1.19).
We prove some cases in §2.5, first computing the capacity of certain channels assuming this result.

Example 2.33 (BSC Channel Capacity)

Suppose we have a BSC (1.5) with error probability 0 󰃑 p < 1/2. Then the input X can be
defined by P[X = 0] = 1− α and P[X = 1] = α. The output Y is then:

P[Y = 0] = (1− p)(1− α) + pα

P[Y = 1] = p(1− α) + p(1− α)

since the probability of mistransmission is p. Recall that h(δ) = −δ log δ − (1− δ) log(1− δ).
Then we have to maximise the mutual information over α, which we can calculate to be:

capacity C = max
0󰃑α󰃑1

I(X,Y )

= max
0󰃑α󰃑1

(H(Y )−H(Y | X))

= max
0󰃑α󰃑1

(h(p(1− α) + p(1− α))− h(p))

= 1− h(p), attained when α = 1/2

= 1 + p log p+ (1− p) log(1− p)

In fact, recalling Proposition 2.22, we already had the bound C 󰃍 1−h(δ) for all 2p < δ < 1/2.
This was useful for p < 1/4: now, we have “the same bound” but with the error probability
doubled! This definition also works for p 󰃍 1/2, even though we ignore these cases.
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Example 2.34 (BEC Channel Capacity)

Now, we consider a BEC (Binary Erasure Channel, also from 1.5) with erasure probability p.
The input is again parameterised by α in the same way, but now:

P[Y = 0] = (1− p)(1− α)

P[Y = 1] = (1− p)α

P[Y = *] = p

with * being the erasure character. Now, if Y = 0 or Y = 1, we know X with certainty, since
the bit is never fully “flipped”, only erased. Thus H(X | Y = 0) = H(X | Y = 1) = 0, and:

H(X | Y = *) = −
󰁛

x

P[X = x | Y = *] logP[X = x | Y = *]

By Bayes’ rule, we can see that:

P[X = 0 | Y = *] =
P[X = 0, Y = *]

P[Y = *]
=

(1− α)p

p
= 1− α

and similarly P[X = 1 | Y = *] = α. This is fairly obvious: erasure is symmetric, so you gain
no information over the prior. Therefore H(X | Y = *) = h(α), so H(X | Y ) = ph(α). So:

capacity C = max
0󰃑α󰃑1

I(X,Y )

= max
0󰃑α󰃑1

(H(Y )−H(Y | X))

= max
0󰃑α󰃑1

(h(α) + ph(α))

= (1− p) max
0󰃑α󰃑1

h(α)

= 1− p, again attained when α = 1/2

Thus 1− p is the capacity of the channel.

Corollary: A BSC with error probability p has capacity 1 − h(p), and a BEC with erasure
probability q has capacity 1− q. Thus it is equally bad to “lose” a proportion h(p) bits as it is to
flip a proportion p of bits. Since h(p) > 2p for 0 < p < 1/2, we can say that flipping a bit is in
fact over twice as bad as losing it!

Note: This makes sense: with erasures, we at least know where our errors are coming from.

Definition 2.35 (Channel Extension)

We model using a channel n times as the nth extension. That is, we replace the input and
output alphabets by Σ′

1 = Σn
1 and Σ′

2 = Σn
2 . Then the channel probabilities are:

P[y1 . . . yn received | x1 . . . xn sent] =

n󰁜

i=1

P[yi received | xi sent]

by memorylessness of the channel yielding independence.

Note: We interpret this as sending a block of n characters. The independence of the Xi states
that in fact every letter is independent of all other letters. In real life, this is usually not true!
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Remark 2.36 (Entropy of the English Language)

The 26 letters of the English language are obviously neither equiprobable nor independent.
What is the actual information rate of English, assuming we consider only the 26 letters and
excluding other characters?

Of course, the maximum entropy would be log2(26), if all probabilities were the same: this is
around 4.70. But of course, this isn’t true. Samuel Morse (who invented Morse code) wanted
to assign probabilities to letters to make his code shorter. He estimated these by counting
the letters in sets of printer’s type, which was a set of metal blocks used for traditional ink
pressing in the 1800s.

Each letter was provided in different quantities for printing, with the quantities intended to
approximate their use in printing. Treating these as probabilities, this distribution implies an
entropy of around 4.22 (90% of the maximum entropy). Modern estimates of frequency from
a much larger corpus of text gives a similar estimate of 4.14 bits.

However, the letters are also not independent! Claude Shannon was the first to estimate the
true entropy, in a 1950 paper entitled Prediction and Entropy of Printed English. He found
an entropy of around 1 bit per letter, so a “redundancy” of 75% (equivalently, an information
rate of around 0.25). In fact, even using only the previous eight letters, the entropy is only
2.3 bits. This estimate is also fairly accurate compared to more modern ones!

Proposition 2.37 (Scalar Capacity)

If a DMC has informational channel capacity (2.31) C, then the nth extension of the channel
has information capacity nC.

Proof: Take the random variable input X = (X1 . . . Xn) which produces as output the random
variable Y = (Y1 . . . Yn). Then consider the entropy:

H(Y | X) =
󰁛

x∈Σn
1

P[X = x]×H(Y | X = x)

Since the channel is memoryless, each Yi is independent of everything except the corresponding
Xi. Therefore we can write the entropy as the sum:

H(Y | X = x) =

n󰁛

i=1

H(Yi | X = x) =

n󰁛

i=1

H(Yi | Xi = xi).

Therefore we can write the overall conditional entropy as

H(Y | X) =

n󰁛

i=1

󰁛

µ∈Σ

H(Yi | Xi = µ)× P[Xi = µ] =

n󰁛

i=1

H(Yi | Xi)

So H(Y | X) is the sum of H(Yi | Xi). We know that we can bound the entropy H(Y) from above
by the sum of the n entropies H(Yi) for 1 󰃑 i 󰃑 n, which means that:

I(X,Y) = H(Y)−H(Y | X)

󰃑
n󰁛

i=1

H(Yi)−
n󰁛

i=1

H(Yi | Xi)

󰃑
n󰁛

i=1

I(Xi, Yi)

But this is at most nC, attained when H(Y) is equal to the sum of the H(Yi). So when the Yi are
all independent, we have a channel capacity of nC, as required. □
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2.5 Shannon’s Noisy Coding Theorem

We now consider Shannon’s Noisy Coding Theorem (Theorem 2.32) in more detail, and prove
it. This theorem states that the operational and informational definitions of channel capacity, as
given in 2.20 and 2.31, in fact coincide.

At first, this result is surprising, as the operational channel capacity is defined in terms of reliable
transmission, while the informational channel capacity is given in terms of the seemingly unrelated
constructs of entropy and mutual information.

Proposition 2.38 (DMC Direction 1)

For a discrete memoryless channel (1.4), the operational channel capacity is no greater than
the informational channel capacity.

Proof: Let C be the informational capacity, and suppose by way of contradiction we can transmit
reliably at some rate R > C. Take the sequence of codes C1, C2, . . . with each Cn of length n and
size ⌊2nR⌋ and maximum error probability ê(Cn) → 0 as n → ∞.

Consider the definition of ê(Cn), compared to the simple error probability:

e(Cn) =
1

|Cn|
󰁛

c∈Cn

P[error | c sent] 󰃑 ê(Cn).

Take X to be the random variable input of the channel, distributed uniformly over Cn. Let Y be
the random variable output when X is transmitted and decoded. Then e(Cn) = P[X ∕= Y ] = pn.

Now, since X is the uniform distribution, we have H(X) = log |Cn|. For sufficiently large n, this
is at least nR − 1, since |Cn| = ⌊2nR⌋. Also, H(X | Y ) 󰃑 h(pn) + pn log(|Cn| − 1), by Fano’s
inequality (Theorem 2.29). Thus the mutual information is at most:

nC 󰃍 I(X,Y ) = H(X)−H(X | Y ) 󰃍 (nR− 1)− (1 + pnnR)

since log(|Cn|− 1) 󰃍 log 2nR = nR, and h(pn) 󰃑 1, where the fact that the capacity is nC follows
from Proposition 2.37. But then rearranging yields

pn 󰃍 n(R− C)− 2

nR
= 1− (C/R)− (2/nR) → 1− (C/R).

Thus pn tends to 1 − (C/R) > 0 as n → ∞, since we assumed that C < R. But we established
that pn 󰃑 ê(Cn), so then ê(Cn) cannot tend to 0, contradicting reliable transmission! □

Proposition 2.39 (BSC Error Probability)

For a binary symmetric channel (1.5) with error probability p, take any R < 1− h(p). Then
there is some sequence of codes C1, C2, . . . with Cn of length n and size ⌊2nR⌋ such that the
average error probability e(Cn) → 0 as n → ∞.

Proof: The idea of this proof is to use a random code. Without loss of generality, assume p < 1/2.
Then there is some ε > 0 with R < 1−H(p+ ε). We use minimum distance decoding, making an
arbitrary choice in case of a tie.

Let m = ⌊2nR⌋, and pick an [n, m] code Cn at random. That is, we pick each of the possible codes
Cn ⊆ {0, 1}n at random with equal probability 2n choose m.

Now, choose 1 󰃑 i 󰃑 m at random, each with probability 1/m. We send ci through the channel,
and get output Y . It suffices to show that the probability P[Y not decoded as ci] → 0 as n → ∞.
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Let r = ⌊n(p+ ε)⌋. Then we can split the incorrect decoding probability into two cases:

P[Y not decoded as ci] = P[ci /∈ Br(Y )]󰁿 󰁾󰁽 󰂀
too many errors

+P[Br(Y ) ∩ Cn ⊋ {ci}]󰁿 󰁾󰁽 󰂀
some other codeword

.

The first case can be written as P[d(ci, Y ) > r] = P[channel makes more than r errors]. But this
tends to 0 as n → ∞, by Proposition 2.21.

Now, consider the second case. For any j ∕= i, the randomness of the code yields

P[cj ∈ B(Y, r) | ci ∈ B(Y, r)] =
V (n, r)− 1

2n − 1
󰃑 V (n, r)

2n
.

Summing this expression over the m− 1 󰃑 2nR other codewords and using Proposition 2.19 yields:

P[Br(Y )∩Cn ⊋ {ci}] 󰃑
(m− 1)V (n, r)

2n
󰃑 2nRV (n, r)

2n
󰃑 2nR × 2nH(p+ε) × 2−n = 2n(R−(1−H(p+ε))

which tends to 0 as n → ∞, since R < 1−H(p+ ε) by assumption! □
Note: This is not the condition for reliable transmission! For that, we require the maximum error
probability ê(Cn) to tend to 0, but here we have only bounded the average error probability. To
salvage this proof, we simply throw out the worst half of the codewords!

Proposition 2.40 (BSC Direction 2)

For a binary symmetric channel, the operational channel capacity is at least the informational
channel capacity. In particular, if the error probability is p, then let R < 1 − h(p). There is
then a sequence of codes with ê(Cn) → 0 as n → ∞.

Proof: Choose R′ strictly between R and C = 1−h(p). Use the previous proposition to construct
a sequence of codes C ′

n which have average error probability e(C ′
n) tending to 0, with the size of

each code being ⌊2nR′⌋.

Then, sort the codewords in C ′
n by their error probability P[mistransmitted | c sent] and throw out

the worse half. This gives a code Cn with ê(Cn) 󰃑 2e(C ′
n). Therefore ê(Cn) tends to 0 as n → ∞,

and also 2nR
′−1 = 2n(R

′−1/n) > 2nR for sufficiently large n.

We can replace Cn by a subcode of size ⌊2nR⌋ for sufficiently large n, and any code at all for n
before this point, to obtain a sequence of codes of the right size with maximum error probability
tending to 0 as required. Therefore C transmits reliably at rate R.

But this is true for all R < 1− h(p) = C, and so the supremum of these rates is C. Therefore the
operational channel capacity is at least this supremum, and so at least the informational channel
capacity, exactly as required. □
Note: Since these proofs used random codes, they were entirely non-constructive. In practice, we
build redundancy into our codes to transmit at or below a desired error probability.

2.6 The Kelly Criterion

In 1956, John Larry Kelly Jr. was working at Bell Labs, and published A New Interpretation of
Information Rate, a paper which applied the lessons of noisy coding and transmission rates to
something very different: gambling.

The game proceeds as follows. Every day at noon, you may make a bet for any amount $K of
your choice (provided you have the capital), and give this money to your friend. Your friend keeps
this money and tosses a biased coin which lands on heads with probability p and tails otherwise.
If heads, you receive $K × u in return.
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The question is: what is the optimal strategy? Obviously, this depends on the probability p with
which you win the game, and also the proportional payout u.

1. Clearly, if pu < 1, then the expected value of this game is Kpu−K < 0, and so the game is
negative in expectation. Therefore you should not take the bet.

2. If pu = 1, then the game is a martingale: the expected value is zero, so the game is fair. Any
sort of loss aversion (which people tend to have) leads to a recommendation of not playing.

3. What if pu > 1? Well, the expected value is positive, but simply betting all your money isn’t
necessarily a good strategy. In fact, with probability 1, you will go broke eventually, and in
fact will go broke with probability 1− (1− p)n after n days.

Now, we can write down a recurrence. Suppose our fortune after n days is Zn, where Z0 = 1 is
our initial wealth (starting capital), and we bet a proportion w of our wealth daily. Then we have:

Zn+1 = Zn × Yn+1 where Yn+1 =

󰀫
uw + (1− w) if the n+ 1st toss is a head

(1− w) if the n+ 1st toss is a tail

Now, we apply the weak law of large numbers, as in 1.30, noticing that Zn = Y1 × Y2 × · · · × Yn,
and taking the sequence of independent and identically distributed random variables to be log Yi.

P
󰀅󰀏󰀏 1

n logZn − E[log Y1]
󰀏󰀏 > ε

󰀆
→ 0.

So to maximise Zn (and hence 1
n logZn) in the long run, we maximise

f(w) = E[log Y1] = p log(uw + 1− w) + (1− p) log(1− w)

f ′(w) =
(pu− 1)− (u− 1)w

((u− 1)w + 1)(1− w)

If u < 1 this is negative: we don’t bet, and in fact should take the other side of the bet if we can!
Now assume u 󰃍 1. If pu 󰃑 1, then f(w) is decreasing for w 󰃍 0, so the same applies. Finally, if
pu > 1, we take a maximum at:

w0 =
pu− 1

u− 1

which is therefore the proportion of our wealth we should bet! When u = 2, which corresponds to
“even odds”, we therefore bet money if and only if p > 1/2: that is, if the game is biased in our
favour. This again matches our heuristic.

Note: Economists often assume that people have utility functions which grow approximately as
fast as the logarithm of their wealth, so that how good a doubling of one’s capital is for you is
close to being independent of your current capital. Under this framework, utility maximisation is
indeed log-wealth maximisation, but the Kelly criterion is totally independent of this assumption!

Kelly showed how to interpret this using information theory. In his model, the gambler receives
information about the game (in his example, a horse race) over a noisy channel.

Just like in Shannon’s Noisy Coding Theorem (Theorem 2.32), information can be transmitted
close to the channel capacity with negligible risk of error in the long run. So if the game lasts for
a sufficiently long time, the gambler can increase their fortune at arbitrarily close to this optimal
rate with very high probability!

Corollary: Using the Kelly criterion is equivalent to maximising expected wealth in almost every
world: for any fixed δ, you can get your wealth to grow at this rate with probability 1− δ.

Note: This is not the same as expected wealth maximisation: such an agent “should” go all-in on
every bet with positive expected value, even though they eventually go broke with probability 1.

Corollary: No strategy can beat the Kelly criterion in more than half of possible worlds. This is
optimal, as the other strategy could itself be the Kelly criterion!
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3 Algebraic Codes

3.1 Linear Codes

We have considered binary codes as arbitrary subsets C ⊆ {0, 1}. Now we insist on some structure.

Definition 3.1 (Field Of Two Elements)

We define F2 = {0, 1}n to be a field over two elements: 0 and 1. Addition and multiplication
are possible in this field modulo 2. We have 0 + 0 = 1 + 1 = 0, and 0 + 1 = 1 + 0 = 1. We
also have 0× 0 = 0× 1 = 1× 0 = 0, and 1× 1 = 1.

We can consider vector spaces over the field F2. These are elements of Fn
2 for some length n, where

addition is element-wise. An element of Fn
2 is thus an n-vector with all entries 0 or 1.

Definition 3.2 (Linear Code)

A code C ⊆ Fn
2 is linear if 0 = (0, . . . , 0) ∈ C and for all x and y in C, x+ y ∈ C.

Equivalently, C ⊆ Fn
2 is linear if and only if it is a vector space over F2. The rank of a code

C is its dimension as such a vector space.

Note: A code of length n and rank k is called an (n, k) code.

Corollary: If C is an (n, k) code, it has a basis v1, . . . , vk. Then C = {
󰁓

λivi : λi ∈ F2}. So in
fact |C| = 2k: an (n, k) code is an [n, 2k] code, and has information rate k/n.

Definition 3.3 (Dot Product)

For x and y in Fn
2 , we define the dot product x · y to be:

n󰁛

i=1

xiyi ∈ F2.

By symmetry, x · y = y · x. This is also bilinear: x · (y + z) = x · y + x · z.

Note: x · x = 0 does not mean that x = 0, just that x has an even number of 1s.

Proposition 3.4 (Linear Code Construction)

Let P ⊆ Fn
2 be any subset. Then C = {x ∈ Fn

2 : (p · x = 0) ∀p ∈ P} is a linear code.

Proof: 0 ∈ C, since p · 0 = 0 for all p ∈ P . Also, if x and y are in C, then p · (x+ y) = p · x+ p · y
by linearity, and this is 0, so x+ y ∈ C. □
Note: P is then called a set of parity checks, and C is a parity check code over P .

Definition 3.5 (Dual Code)

Let C ⊆ Fn
2 be a linear code. The dual code C⊥ is defined to be

C⊥ = {x ∈ Fn
2 : x · y = 0 ∀y ∈ C} .

Note: Dual codes are also linear codes by Proposition 3.4, but it is possible that they intersect
non-trivially with their original code C.
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Take V = Fn
2 , and V ∗ is the set of linear maps from V → F2. Then consider φ : V → V ∗, which

sends x 󰀁→ θx, with θx : y 󰀁→ x ·y is a linear map in V ∗. Then φ is a linear map! Suppose x ∈ kerφ.
Then x · y = 0 for all y ∈ V . Taking y = ei, which is the vector with all entries 0 except entry i,
we get xi = 0. But this is true for all i, so in fact x = 0, and thus the kernel is trivial.

But since dimV = dimV ∗, φ must be an isomorphism. So φ(C⊥) = {θ ∈ V ∗ : θ(x) = 0 ∀x ∈ C},
which is the “annihilator of C” C0. This means that dimC + dimφ(C⊥) = dimC + dimC⊥ = n.

Corollary: Any linear code is a parity check code.

Definition 3.6 (Generator and Parity Check Matrix)

Let C be an (n, k) linear code. Then a generator matrix for C is the k×n matrix whose rows
are a basis for C. A parity check matrix is an (n− k)× n generator matrix for C⊥.

Proposition 3.7 (Equivalence)

Every (n, k) linear code is equivalent to some linear code with generator matrix of the form
(Ik B), where Ik is the k × k identity matrix.

Proof: We can perform operations including swapping two rows and adding one row to another.
(We can also multiply by scalars, but this is unhelpful in F2.)

By Gaussian elimination, we can get G the generator matrix in row echelon form:

󰀳

󰁅󰁅󰁅󰁅󰁅󰁃

1 ∗ ∗ ∗ · · · ∗
0 1 ∗ ∗ · · · ∗
0 0 0 1 · · · ∗
...

...
...

...
. . .

...
0 0 0 0 · · · ∗

󰀴

󰁆󰁆󰁆󰁆󰁆󰁄
a k × n matrix

That is, there is some ℓ(1) < ℓ(2) < · · · < ℓ(k), where Gij = 0 if j < ℓ(i) and 1 if j = ℓ(i).

Now, using equivalence, we can permute the columns to pull the 1s into the right place, so that
the left block of the matrix is Ik. That is, without loss of generality, we may take ℓ(i) = i for all
1 󰃑 i 󰃑 k, and then use more row operations to put G in the form (Ik B) as required, where B is
a k × (n− k) matrix. □
Note: A message y ∈ Fk

2 (a row vector) is sent as yG. If G is of this form, then yG = (y yB).

Proposition 3.8 (Parity Check Matrix)

An (n, k) linear code with generator matrix (Ik B) has parity check matrix (−BT In−k).

Proof: As (IK B)(−B In−k)
T = −B + B = 0, the rows generate a subcode of C⊥. Also, the

dimensions match: dim(C⊥) = n− k = rank(H). So the rows of H are indeed a basis of C⊥. □

Definition 3.9 (Hamming Weight)

Building off the Hamming distance (Definition 2.4), we define the Hamming weight of x ∈ Fn
2

as w(x) = d(x,0), or the number of 1s in x.

Corollary: The minimum distance of a linear code C is then the minimum weight of a non-zero
codeword, since d(x, y) = d(x− y,0) = d(x+ y,0) = w(x+ y), and so x and y are distinct if and
only if x+ y ∕= 0. This gives the minimum distance as the minimum weight of x+ y. This is called
the weight of C, and is easier to find than the minimum distance of an arbitrary binary code.
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3.2 Syndrome Decoding

Suppose C is an (n, r) linear code with parity check matrix H. In particular, we must have that
C = {c ∈ Fn

2 : Hc = 0}, when considering the c as column vectors.

Suppose we have sent c through a noisy channel, and received x through the other side. Since Fn
2

is a field with addition modulo 2, we can write x = c+ e for some unique error pattern e ∈ Fn
2 .

Note: This e has entry ei = 1 if and only if the ith bit of c was corrupted by the channel.

Now, we consider Hx = Hc +He. But then Hc = 0 by definition, and so we are picking up He!
This Hx is called the syndrome of the received codeword.

Suppose that we know C is k-error correcting. Then we can tabulate the syndromes He for each
e ∈ Fn

2 with distance k or less from 0 (equivalently, for each e with w(e) 󰃑 k). This means that
when we receive x ∈ Fn

2 , we can search for Hx in our table, and if successful, we can find Hx = He
for some known error pattern e in our table!

We then decode x as c = x− e, which will always be correct if there were k or fewer errors, as the
distance d(c, x) = w(e) 󰃑 k, and Hc = Hx−He = 0 as required.

Note: This method of decoding relies on the linearity of H: we required H(c+ e) = Hc+He.

Now, we are ready to restate Example 2.9 in the language of linear codes and syndromes!

Example 3.10 (Hamming’s Original 1950 Code Redux)

We defined C ∈ F7
2 by the 7-tuples which satisfy the congruences:

c1 + c3 + c5 + c7 ≡ 0 (mod 2)

c2 + c3 + c6 + c7 ≡ 0 (mod 2)

c4 + c5 + c6 + c7 ≡ 0 (mod 2)

The dual code is therefore C⊥ = {(1010101), (0110011), (0001111)}. This is everything which
is orthogonal to every codeword in C, by design.

In particular, we can write down our parity check matrix H with rows C⊥:

H =

󰀳

󰁃
1 0 1 0 1 0 1
0 1 1 0 0 1 1
0 0 0 1 1 1 1

󰀴

󰁄

When we receive x ∈ Fn
2 , we formed the syndrome zx = (z1, z2, z4), where:

z1 = x1 + x3 + x5 + x7

z2 = x2 + x3 + x6 + x7 (so zx = Hx)

z4 = x4 + x5 + x6 + x7

with addition taken modulo 2. For any c ∈ C, by construction we have zc = (0, 0, 0).

If d(x, c) = 1 for some c ∈ C, then the place where they differ is given by z1+2z2+4z3. This
is because if x = c + ei, where ei is a vector with all 0s except for a 1 in the ith place, then
the syndrome of x is the syndrome of ei, which is the binary expansion of i for all 1 󰃑 i 󰃑 7.

We can see this by writing x = c+ ei, and so Hx = Hc+Hei = Hei. But if ei really is this
error vector with a single 1 in the ith place, then Hei is the ith column of H, read bottom to
top. These are simply (0 0 1), (0 1 0), (0 1 1), (1 0 0), and so on: indeed, they are the binary
representations of the numbers i = 1 to 7. Thus we have a 1-error correcting syndrome code!
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In fact, this allows us to generalise the idea of Hamming codes!

Definition 3.11 (Generalised Hamming Code)

Let d 󰃍 2 and take n = 2d − 1. Let H be a d × n matrix whose n columns are the 2d − 1
non-zero elements of Fd

2.

The Hamming (n, n− d) linear code is then the linear code with parity check matrix H. It is
easy to see the parity checks used: they are precisely the rows of the matrix!

Note: With d = 3, we find Hamming’s original [7, 16, 3] code, which is a (7, 4) linear code.

Proposition 3.12 (Weights in Matrices)

Let C be a linear code with parity check matrix H. Then the weight of C is d if and only if
any set of d − 1 columns of H are linearly independent, but there is some set of d columns
which are linearly dependent.

Proof: Suppose C has length n. Then C = {x ∈ Fn
2 : Hx = 0}. If H has columns v1, . . . , vn, then

the codeword (x1, . . . , xn) is in C if and only if the sum of xivi is 0.

That is, codewords are dependence relations between columns of H. □
Corollary: The Hamming (n, n − d) linear code Cd has minimum distance d(Cd) = 3, and is a
perfect 1-error correcting code.

Proof: Any two columns of the parity check matrix H are linearly independent by construction,
but there is a set of three linearly dependent columns (the first, second, and third), so d(Cd) = 3.

Thus Cd is 1-error correcting, so to be perfect we want V (n, 1)× |Cd| = 2n. Here, n = 2d − 1, and
so V (n, 1) = 1 + n = 2d. Then as |Cd| = 2n−d, the relation holds. □

3.3 Reed-Muller Codes

We now motivate the famous Reed-Muller code, using a construction specific to linear codes.

Definition 3.13 (Bar Product)

Let C2 ⊆ C1 be a pair of nested linear codes of length n. Then the bar product is defined by:

C1|C2 = {(x|x+ y) : x ∈ C1, y ∈ C2} .

Here, (x|x+ y) denotes the concatenation of two n-long codewords. This is therefore a code
of length 2n, and linearity is preserved.

Note: Here, we require the codes to be nested, though definitions often omit this condition. If we
can decode the codes C1 and C2, then we can easily do the same for their bar product C1|C2.

Proposition 3.14 (Bar Product Properties)

For nested linear codes C2 ⊆ C1, the bar product satisfies:

1. rank(C1|C2) = rank(C1) + rank(C2).

2. w(C1|C2) = min {2w(C1), w(C2)}.

Proof: Let x1, . . . , xk be a basis for C1, and let y1, . . . , yℓ be a basis for C2. Then the size k + ℓ
set {(xi|xi) : 1 󰃑 i 󰃑 k} ∪ {(0|yj) : 1 󰃑 j 󰃑 ℓ} is a basis for C1|C2.
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Now, let x ∈ C1 and y ∈ C2, not both zero, and consider two cases.

1. If y ∕= 0, then w(x|y) = w(x) + w(x+ y) 󰃍 w(y) 󰃍 w(C2).

2. If y = 0, then x ∕= 0, and so w(x|x) = 2w(x) 󰃍 2w(C1).

So w(C1|C2) = min {2w(C1), w(C2)}. Additionally, there is some x ∈ C1 with w(x) = w(C1), so
w(x|x) = 2w(x) = 2w(C1), and a y ∈ C2 with w(y) = w(C2), so these bounds are tight. □
Now, we are almost ready to define the Reed-Muller code. We set up some notation first.

Remark 3.15 (Reed-Muller Code Setup)

Let X = Fd
2 = {p1, . . . , p2d}, where we choose some ordering, and set n = 2d. For each A ⊆ X,

we get an indicator vector 1A ∈ Fn
2 using the rule (1A)i = 1 if and only if pi ∈ A.

For x, y ∈ Fn
2 , we have the addition and “wedge product” relations:

x+ y = (x1 + y1, . . . , xn + yn)

x ∧ y = (x1y1, . . . , xnyn)

Then (Fn
2 ,+,∧) is a ring: in fact, it is the product ring of n copies of the ring (F2,+,×), with

operations defined componentwise.

For A,B ⊆ X, recall the symmetric difference A△B = (A \B)∪ (B \A) = (A∪B) \ (A∩B).
This gives us the indicator function relations:

1A + 1B = 1A△B

1A ∧ 1B = 1A∩B

w(1A) = |A| .

Now, we let v0 = 1X = (1, 1, . . . , 1) be the multiplicative identity under ∧. For 1 󰃑 i 󰃑 d,
we let (vi)j = 1 if j ∈ {p ∈ X : pi = 0}. That is, since the p are identified with d-vectors, we
take the entry in position i and check if it is equal to 0, so that vi is an n-vector with entries
1 in the places corresponding to d-vectors with a 0 in position i.

Definition 3.16 (Reed-Muller Codes)

The Reed-Muller code of order r and length n = 2d, written RM(d, r), is the vector subspace
of Fn

2 spanned by v0 and wedge products of at most r of the vi. Since the identity under ∧ is
v0, we take this to be the value of the empty wedge product.

This definition may feel strange and difficult to visualise. It is easy to construct Reed-Muller codes
for a fixed d by constructing an n× n table. When d = 3, we can write:

000 001 010 011 100 101 110 111

v0 1 1 1 1 1 1 1 1

v1 1 1 1 1 0 0 0 0

v2 1 1 0 0 1 1 0 0

v3 1 0 1 0 1 0 1 0

v1 ∧ v2 1 1 0 0 0 0 0 0

v2 ∧ v3 1 0 0 0 1 0 0 0

v1 ∧ v3 1 0 1 0 0 0 0 0

v1 ∧ v2 ∧ v3 1 0 0 0 0 0 0 0



36 · Coding and Cryptography Avish Kumar

Note: Here, we have ordered F3
2 naturally, by treating elements as binary digits, and counting

from 0 to n− 1 = 7. Indeed, reading the rows of v1, v2, and v3 as a list of 8 column vectors from
right to left gives the binary expansions of the numbers from 0 to 7.

Now, we can take specific values of r:

0. When r = 0, we take only the span of v0, yielding the repetition code of length 8.

1. When r = 1, we take only the span of {v0, v1, v2, v3}. This gives us the first four rows of the
table. Deleting the first column, we see the Hamming [7, 16, 3] code! In fact, the first four
rows and last seven columns are the generator matrix for this code.

Also, all the vi have even weight. This means that RM(3, 1) is equivalent to the parity check
extension of the Hamming code, with one extra bit.

2. When r = 2, RM(3, 2) is the span of all the rows except the last one. These are linearly
independent, as we shall see soon. Moreover, each codeword has even weight: this is because
the seven “generator codewords” do, and w(x+ y) ≡ w(x) + w(y) (mod 2).

This means that RM(3, 2) is an (8, 7) linear code with every codeword having even weight.
It is therefore equivalent to the parity check code of length 8.

3. When r = 3, RM(3, 3) is the span of 8 linearly independent vectors, which is clearly all of
F8
2. This means that RM(3, 3) is the trivial code of length 8.

Indeed, RM(d, 0) and RM(d, d) are always the repetition and trivial codes respectively.

Theorem 3.17 (Reed-Muller Properties)

The vectors vi1 ∧ · · · ∧ vis for 1 󰃑 i1 < · · · < is 󰃑 d and 0 󰃑 s 󰃑 d form a basis for Fn
2 , where

n = 2d. Moreover, the Reed-Muller code RM(d, r) is a set with rank

rank(RM(d, r)) =

r󰁛

s=0

󰀕
d

s

󰀖
.

Furthermore, RM(d, r) is equal to the bar product RM(d− 1, r)|RM(d− 1, r − 1), and has a
weight of 2d−r.

Proof: To construct some vector given by the wedge product of s of the vi, we may choose s to
be any value from 0 to d. Then, we may choose the vectors in d choose s ways. This gives

d󰁛

s=0

󰀕
d

s

󰀖
= (1 + 1)d = 2d = n

possible vectors, which is the correct size for a basis of Fn
2 . Thus we must show that these vectors

span Fn
2 , or equivalently that the trivial Reed-Muller code RM(d, r) = Fn

2 .

Let p ∈ X. We want to find an indicator for p. Define

yi =

󰀫
vi if the ith co-ordinate of p is equal to 0

vi + v0 if the ith co-ordinate of p is equal to 1

and notice that 1{p} = y1 ∧ · · · ∧ yd. Expanding using the distributive law yields 1{p} ∈ RM(d, d),
but these indicator variables clearly span Fn

2 .

In fact, by definition RM(d, r) is spanned by vectors vi1 ∧ · · · ∧ vis as above, but now with s 󰃑 r.
Now, we know that these vectors are linearly independent, and so are a basis. The number of these
vectors, and hence the rank of the code, is now the sum we require:

r󰁛

s=0

󰀕
d

s

󰀖
.
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Now, we wish to show the recursive bar product relation. Recall that we usually order the set Fd
2

lexicographically, which is the most natural way to do it. However, clearly we may choose any of
the n! possible orders of this set, and generate an equivalent code.

We choose a clever ordering. Choose X to be the order of Fd
2 which has vd = (0, . . . , 0, 1, . . . , 1),

with 2d−1 of each to form an n-vector. The previous vectors vi for 0 󰃑 i < d are now instead given
by (v′i|v′i), the bar product, where the v′i are given by the X ′ corresponding to Fd−1

2 .

Now, take some element z ∈ RM(d, r). By definition, this is the sum of wedge products of the vi,
since the Reed-Muller code is generated by the wedge projects and the closure under addition (by
linearity). We can split this up into wedge products which do not contain vd and those that do.

This allows us to use the distributivity of ∧ to write z = x+ (y ∧ vd), where x and y are sums of
wedge products of v0 to vd−1 (that is, they are in the previous code).

We have x = (x′|x′) for some x′ ∈ RM(d − 1, r), and y = (y′|y′) for some y′ ∈ RM(d − 1, r − 1)
by the same reasoning. Here, this is because y ∧ vd is generated by at most r wedge products, by
construction of the code, and so y must be generated by at most one fewer.

But this means z = (x′|x′) + (y′|y′) ∧ (0, . . . , 0|1, . . . , 1). We can rewrite this as (x′|x′ + y′), which
is precisely the description of the bar product RM(d − 1, r)|RM(d − 1, r − 1). To verify that the
codes are in fact equal, we can use the equality of their ranks.

Finally, we wish to verify that the weight of the code is 2d−r. We can do this easily: for instance
the code RM(d, 0) is the repetition code of length 2d and thus has weight 2d = 2d−0. Similarly,
the code RM(d, d) is the trivial code of length 2d and clearly has weight 1 = 2d−d as required.

For other weights, that is if 0 < r < d, we can use induction. By induction, RM(d − 1, r) has a
weight of 2d−1−r, and RM(d − 1, r) has a weight of 2d−r. But we have just shown that our code
RM(d, r) is the bar product of these codes, and so Proposition 3.14 gives us that the weight is the
minimum of 2d−r and 2× 2d−1−r. Both of these are in fact equal to 2d−r, so this is the weight of
our code, exactly as required! □

Remark 3.18 (Reed-Muller Heuristic)

A helpful way to think about the Reed-Muller construction is as follows. We take some code
number d, and define n = 2d to be the length of our code. We write out all the d-vectors in
the space Fd

2 (of which there are 2d = n), and order them lexicographically. This gives us an
n-long list of d-vectors, which we call X.

Now, we may consider n-vectors in the space Fn
2 . We define d+1 such vectors: the first is v0,

which is the vector (1, 1, . . . , 1), and the next are vi for 1 󰃑 i 󰃑 d, where vi has a 1 in position
1 󰃑 j 󰃑 n if the jth element of X has a 0 in position i. For example, when d = 3:

X = {000, 001, 010, 011, 100, 101, 110, 111}

so v2 would be the 8-vector which has a 1 in precisely those positions corresponding to the
elements of X with a 0 in the second position. These are the first, second, fifth, and sixth
elements of X: 000, 001, 100, and 101. Thus v2 = (1, 1, 0, 0, 1, 1, 0, 0).

We then define the wedge product to be “bitwise AND” on two n-vectors. We then choose
some 0 󰃑 r 󰃑 d, and define the codewords of the Reed-Muller code RM(d, r) to be precisely
the n-vectors of the form “bitwise AND of some collection of at most r of the vi”.

Note: A different ordering of Fd
2 gives us an equivalent code, which is a property we used in the

proof of Theorem 3.17. In fact, the recurrence relation between codes we proved yields another
way to define the Reed-Muller code! We start with RM(d, 0) and RM(d, d) as the repetition and
trivial codes of length n = 2d, and define other codes using the bar product recurrence relation:

RM(d, r) = RM(d− 1, r)|RM(d− 1, r − 1).
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3.4 An Overview of Algebra

The results we will prove later, especially when we study cryptography, are going to involve a lot
of formal algebra, and especially the study of groups and rings. While we do not formally prove all
the material we use, an overview of these mathematical objects will be helpful later on. We begin
with an introduction here.

Note: These definitions and results should of course all be familiar already! More discussion and
proofs can be found in IB Groups, Rings and Modules, IB Linear Algebra, and II Galois Theory.

Definition 3.19 (Group)

A group (G, ·) is a non-empty set G with a binary operation · which takes two elements in G
and returns a third element (not necessarily distinct). This set satisfies the properties:

1. Associativity : for all x, y, and z in G, we have (x · y) · z = x · (y · z).

2. Identity : there is a fixed element e ∈ G such that for all x ∈ G, we have e ·x = x · e = x.

3. Inverses: for each element x ∈ G, there is an element y ∈ G such that x · y = y · x = e.

Definition 3.20 (Ring)

A ring R is a non-empty set with two binary operations + and ×. We insist that (R,+) is a
commutative group with × distributive over +. That is, for all x, y, and z in R, we have

a× (b+ c) = (a× b) + (b× c).

We often write ab for a× b and a+ b× c for a+ (b× c). The integers Z are an infinite ring,
as is Fn

2 under + and ∧ (as we remarked in 3.15).

Definition 3.21 (Ideal)

An ideal I ⊳ R is an additive subgroup of a ring (a subset of a group which is a group in its
own right with the same identity), which is closed even under external multiplication. That
is, if a ∈ I and r ∈ R, then ra ∈ I. The even integers are an ideal of the integers.

Theorem 3.22 (Correspondence Theorem)

Let I ⊳ R be an ideal of R, and let q be the quotient map q : R → R/I. The quotient map
is the function which sends elements in R to the equivalence classes R/I, where two elements
of R are equivalent if their difference is in the ideal I.

Then there is a bijection between the set of ideals J ⊳R such that I ⊆ J and the set of ideals
in the quotient ring R/I. In particular, the bijection is given by J 󰀁→ J/I, and the inverse is
K 󰀁→ {r ∈ R : q(r) ∈ K}.

Definition 3.23 (Principal Ideal Domain)

An ideal is principal if it is generated by a single element: we can write every element in
terms of that element. For example, the ideal 6Z ⊳ Z is generated by the element 6, and we
write 6Z = (6). If every ideal of R is principal, then R is a principal ideal domain, or PID.

We have met fields already, first in Definition 3.1, where we considered F2.
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Definition 3.24 (Field)

A field is a ring where multiplication is also commutative and which contains a multiplicative
identity (which we call 1) such that every element apart from the additive identity (called 0)
has a multiplicative inverse.

For example, Q is a field, because every rational number p/q has the multiplicative inverse
q/p ∈ Q, if p/q ∕= 0. However Z is not a field, since there is no element such that 2 · x = 1.

If F is a field, then the polynomial ring F [X], which is the set of polynomials in X taking
coefficients in F , is a principal ideal domain.

Example 3.25 (Rings and Fields)

We can take Z to be a ring. As we noted earlier, 6Z is a principal ideal of Z generated by 6.
The only ideals in Z are of the form nZ, and so the ideals which contain 6Z are precisely Z,
2Z, 3Z, and of course 6Z itself.

Now, consider F2[X], which is the set of polynomials taking values in F2 = {0, 1}. Take the
ideal generated by the element X3 + 1. Then the ideals which contain this are those which
divide this polynomial: (1), (X + 1), (X2 +X + 1), and of course (X3 + 1) itself.

Theorem 3.26 (Finite Fields)

Let K be a finite field. Then |K| = pr for some prime p and r 󰃍 1, and Fp ⊆ K.

Moreover, if q = pr, then there exists a unique field Fq with q elements up to isomorphism.

Proposition 3.27 (Isomorphism)

Let q = pr be a prime power. Then there is some element α ∈ Fq such that

F×
q = Fq \ 0 =

󰀋
1,α,α2, . . . ,αq−2

󰀌
.

That is, F×
2 is the cyclic group Cq−1, and α is called a primitive element.

If r | s, then Fpr is a subfield of Fps . Also, if f(X) ∈ Fq[X], then there exists some r 󰃍 1 such
that f(X) factors completely into linear factors.

Definition 3.28 (Derivative)

Let F be a field and define a polynomial over the field to be:

f(X) =

n󰁛

k=0

akX
k ∈ F[X].

We define the derivative of f , written f ′(X), to be the sum:

f ′(X) =

n󰁛

k=1

kakX
k−1 ∈ F[X].

This is a formal series, and has nothing to do with limits or continuity.
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Proposition 3.29 (Differentiation)

Let F be a field and f(X) and f ′(X) as above. Then let a ∈ F. If (X − a)2 | f(X), then both
f(a) and f ′(a) are 0.

Proof: We have f(X) = (X −a)2g(X), so f ′(X) = 2(X −a)g(X)+ (X −a)2g′(X). Thus we have
f(a) = f ′(a) = 0, as required. □
In particular, consider (XN −1) ∈ Fq[X] for N odd. Then there is some K with Fq ⊆ K such that
(XN − 1) factorises into linear factors in K[X]. Furthermore, XN − 1 has distinct roots.

3.5 Cyclic Codes

Much like when we defined linear codes in §3.1, we motivate the study of cyclic codes by insisting
on extra structure being enforced on our subsets.

Definition 3.30 (Cyclic Code)

A code C ⊆ Fn
2 is cyclic if it is linear and if we have:

(a0, a1, . . . , an−2, an−1) ∈ C

=⇒ (a1, a2 . . . , an−1, a0) ∈ C

That is, we may cycle the elements around any number of places.

Note: We identify Fn
2 with the quotient F2[X]/(Xn − 1). In fact, we can take π to be the natural

isomorphism π : (a0, . . . , an−1) 󰀁→ a0 + a1X + · · ·+ an−1X
n−1.

Proposition 3.31 (Cyclic Conditions)

A code C ⊆ Fn
2 is cyclic if and only if C = π(C) satisfies:

1. 0 ∈ C.

2. If f and g are in C, then so is f + g.

3. If f ∈ C and g ∈ F2[X], then gf ∈ C.

Proof: The first two must hold by linearity of C. Lastly, notice that

Xf(X) = an−1 + a0X + · · ·+ an−2X
n−1 (mod Xn − 1)

and so the last point holds for g(X) = X. In fact, repeating this procedure shows that it holds for
all functions of the form g(X) = Xr, so linearity proves the last point. □
Corollary: C is a cyclic code of length n if and only if C is an ideal in F2[X]/(Xn − 1).

Note: From now on, we identify the code C with the ideal C, and simply write C for both.

Definition 3.32 (Generator Polynomial)

A generator polynomial g(X) for a cyclic code C is a polynomial dividing Xn − 1 such that

C = {f(X)g(X) (mod Xn − 1) : f(X) ∈ F2[X]} .
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Theorem 3.33 (Generator Polynomial Existence)

In fact, every cyclic code has a generator polynomial!

Proof: C is an ideal in F2[X]/(Xn−1). By the Correspondence Theorem (3.22), C = J/(Xn−1)
for some (Xn − 1) ⊆ J ⊳ F2[X]. But this is a principal ideal domain (3.23), and so J = (g(X)) for
some g(X) ∈ F2[X]. But then (Xn − 1) ⊆ (g(X)), and so g(X) | Xn − 1. □
Corollary: If we insist that they are monic, then generator polynomials are unique. But in fact
this is always true, since every polynomial in F2[X] is monic!

Corollary: There is a bijection between the cyclic codes of length n and the factors of Xn − 1 in
the polynomial ring F2[X].

Corollary: If cyclic codes C1 and C2 have generator polynomials g1 and g2, then g1(X) | g2(X)
if and only if C2 is a subcode of C1.

Corollary: If n is odd, then f(X) = Xn−1 has no repeated roots. This means that we can factor
Xn − 1 = f1(X) × · · · × fk(X) into distinct irreducible polynomials fi(X) ∈ F2[X]. The number
of cyclic codes of length n is therefore 2k.

Proposition 3.34 (Generator Basis)

Suppose that C is a cyclic code of length n with generator polynomial

g(X) = a0 + a1X + · · ·+ ak−1X
k−1 +Xk.

Then
󰀋
g(X), Xg(X), . . . , Xn−k−1g(X)

󰀌
is a basis for C.

Proof: We show linear independence first. Suppose that f(X)g(X) ≡ 0 (mod Xn − 1) for some
f(X) ∈ F2[X] with deg(f) 󰃑 n− k − 1. Then deg(fg) 󰃑 n− 1, so f(X)g(X) = 0 ⇒ f(X) = 0.

Now, we show that this set spans. Let p(X) ∈ F2[X], representing an element of C. Without loss
of generality, we may assume that deg(p) < n. Then p(X) = f(X)g(X) for some f(X) ∈ F2[X]
with degree deg(f) = deg(p)− deg(g) < n− k.

But then p(X) is in the span of this set, as required, so this set is a basis for C. □
Corollary: The code C has rank n− k.

So we have considered a code being a set of codewords of the form (a0, . . . , an−1) ∈ Fn
2 , such

that the code is closed under permutation and addition. We have seen that this equivalent to a
polynomial in the quotient ring of F2[X]/(Xn − 1), which gives us a generator polynomial g(X).

This formulation allows us to write down a generator matrix (3.6) for C. If C is generated by the
polynomial g(X) = a0 + · · ·+ akXk, with ak = 1, then the generator matrix is:

G =

󰀳

󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁃

a0 a1 a2 · · · 0 0 0

0 a0 a1 · · · 0 0 0

0 0 a0 · · · 0 0 0
...

...
...

. . .
...

...
...

0 0 0 · · · ak−2 ak−1 ak

󰀴

󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁄

(an n× (n− k) matrix).

Definition 3.35 (Parity Check Polynomial)

The parity check polynomial is the polynomial h ∈ F2[X] such that g(X)h(X) = Xn − 1.
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Suppose h(X) = b0 + · · ·+ bn−kX
n−k, with bn−k = 1. Then we can write down the matrix:

H =

󰀳

󰁅󰁅󰁅󰁅󰁅󰁃

bn−k bn−k−1 bn−k−2 · · · 0 0 0

0 bn−k bn−k−1 · · · 0 0 0
...

...
...

. . .
...

...
...

0 0 0 · · · b2 b1 b0

󰀴

󰁆󰁆󰁆󰁆󰁆󰁄
(an n× k matrix).

Then in fact this is a parity check matrix (3.6) for C! The rows of G are orthogonal to the rows
of H, the dot product of the kth row of G and the kth row of H gives the coefficient of Xn−k in
g(X)h(X). As bn−k = 1, the rank of H is k, which is the rank of C⊥ as required.

Corollary: The parity check polynomial is the generator polynomial for the “reversed” code of
C⊥, where all codewords are read back-to-front.

3.6 BCH Codes

We now consider a particular type of cyclic code, discovered by Bose and Ray-Chaudhuri and
later discovered independently by Hocquenghem. To motivate this, we first consider an alternative
formulation of a cyclic code to the one given in Definition 3.30.

Definition 3.36 (Cyclic Code)

Let K be some finite field which contains F2. Now consider A ⊆ {x ∈ K : xn = 1}. The cyclic
code of length n defined by A is the set:

C = {f(X) (mod Xn − 1) : f(α) = 0 for all α ∈ A} .

That is, C is the set of polynomials modulo (Xn − 1) which annihilate all elements of A. As
required, the zero polynomial is in C, additivity is satisfied, and if f ∈ C, then αf(α) ∈ C,
which gives us the cyclic condition too.

With this alternative “polynomial-first” definition, we may define the BCH code!

Definition 3.37 (BCH Code)

Let K be some field containing F2. Suppose n is odd and α ∈ K is a primitive nth root of
unity, so the roots of Xn − 1 are 1,α,α2, . . .αn−1.

Then the cyclic code with defining set A =
󰀋
α,α2, . . . ,αδ−1

󰀌
is called the BCH Code with a

design distance of δ.

Note: The minimal polynomial for α over F2 is the polynomial of least degree satisfied by α.

Corollary: The generator polynomial g(X) for a BCH code is the lowest common multiple of the
polynomials m1(X),m2(X), . . . ,mδ−1(X), which are the minimal polynomials for αi over F2.

Proposition 3.38 (Vandermonde Determinant)

The determinant of the n × n matrix with the ith column equal to 1, xi, . . . , x
n−1
i for some

sequence x1, . . . , xn is the product of (xi − xj) over all 1 󰃑 j < i 󰃑 n.

Proof: We work in the ring Z[x1, . . . , xn]. When xi = xj , the determinant is zero, so (xi−xj) (and
thus the product) divides the determinant. But both sides have the same degree and coefficient of
x2x

2
3 . . . x

n−1
n , which is 1, so in fact they must be the same polynomial. □
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Theorem 3.39 (Design Distance Theorem)

The minimum distance of a BCH code is at least the design distance δ.

Proof: Consider the (δ − 1)× n matrix

H =

󰀳

󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁃

1 α α2 · · · αn−1

1 α2 α4 · · · α2(n−1)

1 α3 α6 · · · α3(n−1)

...
...

...
. . .

...

1 αδ−1 α2(δ−1) · · · α(δ−1)(n−1)

󰀴

󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁄

.

Any δ − 1 columns form a Vandermonde matrix from the previous proposition, where the xi are
αi (at least when factors are pulled out). Thus any δ − 1 columns of H are linearly independent.

But a codeword in C is just a dependence relation between the columns of H, and so the weight
of C is at least δ as desired, since the determinant is non-zero (as αi ∕= αj for i ∕= j). □
Note: Unfortunately, H is not a parity check matrix in the usual sense, since the entries are in
K rather than F2. However, it does function in a similar way.

Example 3.40 (BCH Codes)

Take n = 7, and consider the polynomial X7 − 1. We can factorise this as:

(X7 − 1) = (X + 1)(X3 +X + 1)(X3 +X2 + 1).

These must all be irreducible in F2[X]. If the two cubic polynomials did have factors, then in
particular they must have linear factors, and this is not possible, because they have no roots
in F2 (since both are 1 when evaluated at either 0 or 1, as X3 = X2 = X in F2).

Define g(X) = X3 +X + 1. Then h(X) = X4 +X2 +X + 1, since these multiply to X7 − 1.
We can thus write down the parity check matrix:

H =

󰀳

󰁅󰁅󰁃

1 0 1 1 1 0 0

0 1 0 1 1 1 0

0 0 1 0 1 1 1

󰀴

󰁆󰁆󰁄 .

But the columns of H are the seven non-zero elements of F3
2, and so the code generated by

this polynomial g is once again the original Hamming code!

Now consider the splitting field K of X7 − 1. Then let α ∈ K be a root of g(X), and thus a
primitive 7th root of unity. Then we have:

g(α) = 0 =⇒ α3 = α+ 1

=⇒ α6 = (α+ 1)2 = α2 + 1

=⇒ g(α2) = 0

Similarly, g(α3) = 0, but this does not hold for α4. The BCH code with length 7 and design
distance δ = 3 therefore has defining set

󰀋
α,α2

󰀌
, and so has generator polynomial g(X). This

is Hamming’s original code, and so the weight of the code is at least 3.

Note: This is the fourth time we have constructed Hamming’s original code! We first met it in
Example 2.9, then again in Example 3.10 as a linear code, then in §3.3 as the Reed-Muller code
RM(3, 1), then finally as the BCH code with length 7 and design distance 3 here!
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How do we decode BCH codes? Suppose that K is a field containing F2 and that α is an nth root
of unity in K, where n is odd. Then we choose δ 󰃑 n to be the design distance, and consider the
set

󰀋
α,α2, . . . ,αδ−1

󰀌
to be the generator of our code C. That is:

C =
󰀋
f(X) (mod Xn − 1) : f(αi) = 0 for all 1 󰃑 i < δ

󰀌
.

We send c ∈ C and receive r = c+e for some error vector which we call e. By the Design Distance
Theorem (3.39), the minimum distance of C is at least δ, and so we can correct at least t =

󰀇
δ−1
2

󰀈

errors. Identify r, c, and e with polynomials in the quotient ring Fn
2/(X

n − 1).

Definition 3.41 (Error-Locator Polynomial)

For polynomials r(X), c(X), and e(X), define ξ = {0 󰃑 i 󰃑 n− 1 : ei ∕= 0}. This is the set of
exponents where e(X) has a non-zero coefficient, or alternatively the set of indices at which
there was an error in transmission. Then the error-locator polynomial is given by:

σ(X) =
󰁜

i∈ξ

(1− αiX).

The degree of this polynomial is |ξ|. Assuming that deg(σ) = |ξ| 󰃑 t (the number of errors
we can certainly correct), our task is to recover σ(X) only from r(X).

Theorem 3.42 (Error-Locator Polynomial Recovery)

The error-locator polynomial σ(X) has constant term 1, and satisfies the congruence:

σ(X)

2t󰁛

j=1

r(αj)Xj ≡ w(X) (mod X2t+1)

for some polynomial w(X) of degree at most t. Moreover, σ(X) is the unique polynomial of
least degree which satisfies this congruence.

Proof: We first define a candidate polynomial:

w(X) = −Xσ′(X) =
󰁛

i∈ξ

αiX
󰁜

j ∕=i∈ξ

(1− αjX).

This w(X) has degree equal to deg(σ) 󰃑 t. From now on, we work in the ring of formal power
series K[[X]], which are possibly infinite linear combinations of the form βiX

i with the βi ∈ K.
In particular, we have the crucial formal power series:

1

1− αiX
=

∞󰁛

n=0

(αiX)n ∈ K[[X]].

w(X)

σ(X)
=

󰁛

i∈ξ

αiX

1− αiX
=

󰁛

i∈ξ

∞󰁛

j=1

(αiX)j =

∞󰁛

j=1

󰁛

i∈ξ

(αj)i

󰁿 󰁾󰁽 󰂀
e(αj)

Xj =

∞󰁛

j=1

e(αj)Xj .

Multiplying through by σ(X) therefore proves the congruence, as the degrees match. (By definition
of C, we have c(αj) = 0 for 1 󰃑 j < δ, ie. for 1 󰃑 δ 󰃑 2t. Thus r(αj) = e(αj) for 1 󰃑 j 󰃑 2t.)

Now, if we have σ̃(X) and w̃(X) with deg(σ̃) 󰃑 deg(σ), then σ(X)w̃(X) ≡ σ̃(X)w(X) mod X2t+1,
and so are equal (since all are of degree 󰃑 t). Since σ(X) has distinct non-zero roots, σ(X) and
w(X) = −Xσ′(X) are coprime. But then σ(X) | σ̃(X), and since deg(σ̃) 󰃑 deg(σ), σ̃(X) is just a
scalar multiple of σ(X). As the constant terms match, σ = σ̃, proving uniqueness. □
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3.7 Feedback Shift Registers

We now consider a function between vector spaces Fd
2. These will represent a common mechanism

used in digital logic, called a shift register.

Definition 3.43 (Feedback Shift Register)

A general feedback shift register is a function f : Fd
2 → Fd

2 of the form:

f(x0, . . . , xd−1) = f(x1, . . . , xd−1, c(x0, . . . , xd−1)),

where c : Fd
2 → F2 is some function. That is, this function “deletes the first letter, moves the

other letters back to fill the spot, then appends some function of the original letters.”

If c is a linear function, then we call f a linear feedback shift register, or LFSR.

What does this look like in practice? We take some register in Fd
2, and apply the linear function c

to it to generate a new element. Then, we push it to the end, and make space at the front.

x0 x1 x2 x3 x4 . . . xd−1
󰀃 󰀄

x1 x2 x3 x4 . . . xd
󰀃 󰀄

x5 xd−1

xd−2

c

old register

new register

f

linear function

We can repeatedly apply this process to generate a stream of registers! Since each register in the
sequence shares almost all its elements with the previous register, except one new element at the
end generated by applying c, we can consider the sequence to be over these elements.

Definition 3.44 (Stream, Feedback Polynomial)

Suppose we have an initial fill y0, . . . , yd−1, which we consider to be some initialising sequence
for the register in Fd

2.

Consider a linear feedback shift register f associated with a linear function c, which we write
as c(x0, . . . , xd−1) = a0x0 + · · ·+ ad−1xd−1.

Then the stream associated with f and the initial fill y0, . . . , yd−1 of the register is the sequence
of yi which, for n 󰃍 d, progresses as:

yn = a0yn−d + a1yn−d+1 + · · ·+ ad−2yn−2 + ad−1yn−1 = c(yn−d, . . . , yn−1).

This is a recurrence relation, or difference equation. The feedback polynomial is then:

P (X) = Xd + ad−1X
d−1 + · · ·+ a1X + a0.

We now consider a new way of looking at infinite sequences of elements in F2. For finite sequences,
we could identify an equivalent generating polynomial. For infinite sequences, this will not be a
polynomial per se, but a formal power series like in the proof of Theorem 3.42.
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Definition 3.45 (Generating Function)

A sequence x0, x1, x2, . . . of elements in F2 has generating function:

G(X) =

∞󰁛

j=0

xjX
j = x0 + x1X + x2X

2 + · · · ∈ F2[[X]].

This is a formal power series with coefficients in F2.

Theorem 3.46 (LFSR Stream Theorem)

The stream x0, x1, . . . comes from a linear feedback shift register with feedback polynomial
P (X) with a0 ∕= 0 if and only if the generating function is:

G(X) =
B(X)

A(X)

where A(X) is the reverse of P (X) and B(X) is a polynomial with degB < degA.

Proof: Suppose that P (X) = adX
d + ad−1X

d−1 + · · ·+ a1X + a0 with ad = 1. Then the reverse
is A(X) = a0X

d + a1X
d−1 + · · ·+ ad−1X + ad. So we can compute:

A(X)G(X) =

󰀣
d󰁛

i=0

ad−iX
i

󰀤󰀳

󰁃
∞󰁛

j=0

xjX
j

󰀴

󰁄 .

We want this to be B(X), a polynomial of degree less than degA = d. This is true if and only if
the coefficient of Xr in A(X)G(X) is zero for all r 󰃍 d. Equivalently, we require:

󰀣
d󰁛

i=0

ad−ixr−i

󰀤
= 0 for all r 󰃍 d

which is true if and only if the sequence (xn) comes from an LFSR with polynomial P (X). □
Corollary: The congruence G(X)A(X) ≡ B(X) (mod X2d) determines A, and hence P , similarly
to the Error-Locator Polynomial Recovery Theorem (3.42).

Note: If a0 = 0, then the output stream is x0, y0, y1, . . . , where (yn) is the output of an LFSR
with feedback polynomial Xd−1 + ad−1X

d−2 + · · ·+ a2X + a1. That is, the first digit is ignored!

3.8 The Berlekamp-Massey Algorithm

Now, we turn to what is in some sense the reverse problem of computing the stream of an LFSR.
If the sequence (xn) is the output stream of a binary LFSR with an unknown polynomial, how
would we go about finding the unknown d and a0, . . . , ad−1 with

xn +

d󰁛

i=1

ad−ixn−i = 0 for all n 󰃍 d?

In this case, we can write down the matrix equation:
󰀳

󰁅󰁅󰁅󰁅󰁅󰁃

xd xd−1 · · · x1 x0

xd+1 xd · · · x1 x0

...
...

. . .
...

...

x2d x2d−1 · · · xd+1 xd

󰀴

󰁆󰁆󰁆󰁆󰁆󰁄

󰀳

󰁅󰁅󰁅󰁅󰁅󰁃

1

ad−1

...

a0

󰀴

󰁆󰁆󰁆󰁆󰁆󰁄
=

󰀳

󰁅󰁅󰁅󰁅󰁃

0

0

0

0

󰀴

󰁆󰁆󰁆󰁆󰁄
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How would we find a solution? The answer comes in the form of the Berlekamp-Massey Algorithm.
We look sucessively at the matrices of the form:

A0 =
󰀓
x0

󰀔
A1 =

󰀣
x1 x0

x2 x1

󰀤
A2 =

󰀳

󰁅󰁅󰁃

x2 x1 x0

x3 x2 x1

x4 x3 x2

󰀴

󰁆󰁆󰁄

starting at Ar, if we happen to know that r 󰃍 d in advance.

Note: The matrices Ai are nested, with all but the bottom and left row and column of Ai+1 being
the previous matrix Ai.

For each i, we compute detAi. If det(Ai) ∕= 0, then d ∕= i, because the vector of coefficients cannot
be mapped to the zero vector under Ai. If detAi = 0, then we solve the matrix equation on the
assumption that d = i to obtain a putative polynomial solution.

We check our solution over the number of terms in the stream to which we have access, and if it
fails for any element of the sequence, we know that d ∕= i. If we have proceeded inductively so far,
we know in fact that d > i, so we can begin with the hypothesis A = Ai+1.

Note: When checking, it is easier to use Gaussian elimination rather than expanding along the
rows and columns.

The Berlekamp-Massey algorithm can definitively rule out certain degrees d, but is vulnerable to
“false positives”. In fact, it is impossible for any algorithm not to be vulnerable to this! No matter
how many terms of the sequence are checked, it is impossible to distinguish between the initial fill
of the LFSR and the “feedback phase”.

More generally, any finite sequence can be generated by infinitely many LFSRs. If we have a bound
on the degree (that is, a fixed M such that we know d 󰃑 M), can we find the solution?

Trivially, not always! For example, if the initial fill is a list of M zeros, then in fact the sequence will
be entirely filled with zeros forever, and so we cannot possibly determine the “true” polynomial.

However, the algorithm does always find the minimal solution. That is, for any finite sequence
x0, . . . , xm which is generated by an LFSR, the algorithm will return the minimal polynomial (by
degree) P (X) such that if degP = d, then the sequence x0, . . . , xd−1 generates the above sequence
of m+ 1 terms when used as the initial fill of an LFSR with polynomial P .
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4 Cryptography

4.1 Cryptosystems

In §1.1, we remarked that there were three very common desiderata for the communication problem
over a possibly noisy channel.

1. Economy: we would like to minimise the amount of unnecessary information sent: the code
should not be too long, as it wastes time and money.

2. Reliability: the decoder should be able to successfully decipher the plaintext with very high
probability, or mistakes should be detectable.

3. Privacy: we may want only someone with the decoder to be able to read the message.

We have focused thus far on the first two of these problems: in the noiseless case, we sought to
make our codes as efficient as possible (optimising in §1.5) and in the noisy case, we sought to
prove bounds on how accurate we could make our codes even over an unreliable channel.

Now, we turn from coding to cryptography, which focuses on preserving privacy. What if we not
only want our receiver to be able to reliably decode what we want to say, but for nobody else to
be able to do so, even if they can intercept our message?

Definition 4.1 (Cryptosystem)

Encryption is the process of turning unencrypted original text into a secret, encrypted message
which only our desired recipient can access. We use the phrase “plaintext” to refer to this
unencrypted text, and “ciphertext” to refer to the result.

Before transmission, the parties share some secret information called the key. Then the sets
of interest to the problem of cryptography are:

M = {all possible unencrypted messages}
C = {all possible encrypted messages}
K = {all possible keys} .

A cryptosystem is then a collection of these sets M, C, and K, as well as functions:

e : M×K → C d : C ×K → M

called the encryption and decryption functins respectively, with the property that:

d(e(m, k), k) = m ∀m, k ∈ M×K.

That is, for all possible keys and all possible messages, the message can be decrypted using
the key! Of course, ideally the message will not be decodable without the key.

Example 4.2 (Simple Substitution Cipher)

Some examples of the basis cryptosystems will encrypt the letters of the English language.
We often take M = C = Σ, where Σ is some alphabet like {A,B,C, . . . ,Z}.

The simple substitution cipher takes K to be the set of permutations of Σ. The encryption
function e then sends each letter to its image under the permutation. In the case where the
permutation is of the form “send each letter to the letter X places after”, we recover the
classic Caesar Shift cipher used by Julius Caesar: if X = 13, we recover ROT13.
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Example 4.3 (Vigenère Cipher)

The Vigenère cipher is a generalisation of the Caesar cipher, but with K = Σd. We now take
the messages to be in the alphabet Σ∗ of English strings. Here, we write the key under the
message, and “add letters”.

This is better than the Caesar shift, because letters in the original plaintext are not always
mapped to the same letters in the ciphertext. One advantage of this is that it is resistant to
frequency analysis. Recall from Remark 2.36 that English letters are not equally distributed.
If a plaintext has a high density of W, for instance, it is very likely that E was mapped to W.

First documented in 1553, this cryptosystem was named the “unbreakable cipher” until 1863,
when Friedrich Wilhelm Kasiski managed to publish a method of breaking it.

Note: This cipher shows that in general, it is not the case that the concatenation of the encryption
of two messages is the encryption of the concatenation!

Other famous examples include the Enigma code used by the German army in World War II, and
the cipher used in the Voynich Manuscript (Voynichese), a famous 15th century codex written in
a bizarre script which is still undeciphered!

Now, we want to make our cryptosystem resistant to adversaries. What does this mean?

Remark 4.4 (Three Levels of Attack)

From now on, we use terminology standard in the world of cryptography, where the sender
of a message (who knows the plaintext) is named Alice, and the recipient is named Bob. An
eavesdropper, who is an adversary trying to crack the cryptosystem and decipher the secret
message intended only for Bob, is aptly named Eve.

We assume that Eve may know the functions d and e, and the probability distributions used
over M and K, but not the specific key k chosen itself. They seek to read messages from the
encrypted ciphertext, and decipher the message m (or more generally, discover the key k).

We consider three possible levels of attack that Alice and Bob may face:

L1. “Ciphertext only”: Eve knows only the specific piece of ciphertext sent.

L2. “Known plaintext”: Eve has a considerable length of ciphertext as well as the plaintext
to which this decrypts, and wants to break the key in full generality.

L3. “Chosen plaintext”: Eve has access to the encryption function e, and can encrypt any
plaintext of her choice.

These are in increasing order of power.

We describe cryptosystems by the levels of attack to which they are resistant. Of course, this
is often a qualitative judgment: sometimes it is the case that a message is decipherable, but
it would take trillions of years for even a supercomputer to find the plaintext.

In modern “industrial scale applications”, we want as high a resistance as possible.

For sufficiently long pieces of normal (non-random) English text, the Caesar Shift cipher is
vulnerable even to level 1. However, if the text being sent is purely a random sequence of
letters, then Eve’s job becomes much harder!

Good cryptosystems require mathematics as well as good engineering and management. In
this section, we aim to quantify properties of how secure a cryptosystem may be, in terms of
the time to crack it, the probability of perfect security, and so on.
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4.2 Unicity Distance

Heuristically, the unicity distance of a code is a measure of how long a message one can send before
it becomes noticeably easier to decipher. We will work towards quantifying this intuition, using
concepts found in our study of entropy (introduced in §1.4 and further studied in §2.3).

From now on, we will take our cryptosystem (4.1) to be (M,K, C), and suppose that M and K
are both finite sets. We define M and K to be random variables taking values in M and K (the
message and the key respectively), and define C = e(M,K) to be the ciphertext.

Definition 4.5 (Equivocation)

The key equivocation is the conditional entropy H(K | C). Similarly, the message equivocation
is the conditional entropy H(M | C).

(In English, equivocation is the use of imprecise, dubious language with the intent to mislead.)

Proposition 4.6 (Equivocation Inequality)

The message equivocation is at most the key equivocation: H(M | C) 󰃑 H(K | C).

Proof: Since M = d(C,K), we know that H(M | C,K) = 0. We now use Proposition 2.26:

H(K | C) = H(K,C)−H(C)

= H(M,K,C)−H(M | K,C)−H(C)

= H(M,K,C)−H(C)

= H(K | M,C) +H(M,C)−H(C)

= H(K | M,C) +H(M | C)

󰃑 H(M | C)

using the fact that entropy is non-negative. □
Note: A cryptosystem is said to have perfect secrecy if H(M | C) = H(M).

Definition 4.7 (Unicity Distance)

The unicity distance of a cryptosystem is the least n > 0, if it exists, such that the conditional
entropy H(K | C(n)) = 0. If there is no such n, we say that U is infinite.

In words, this is the smallest length of ciphertext required to uniquely determine the key.

Corollary: We have H(K | C(n)) = H(K,C(n))−H(C(n)) = H(K,M (n))−H(C(n)). But this is
equal to H(K) +H(M (n))−H(C(n)), allowing us to calculate U more easily.

Note: From now on, we assume that all keys are equally likely, so H(K) = log |K|. We further
assume that entropy of M (n) is nH, where H = H(M) is the entropy of a single piece of plaintext.
Finally, we assume that all observed ciphertext is equally likely, so H(C(n)) = n log |Σ|.

Corollary: We have H(K | C(n)) = log |K|+nH −n log |Σ|. The unicity distance given our three
assumptions is therefore:

U =
log |K|

log |Σ|−H(M)
.

(or more precisely, the ceiling of this).

Corollary: To make U large, we should make the key space |K| large, or send messages with very
little redundancy, defined to be R = 1−H/ log |Σ|. We should also not use a single key for a piece
of plaintext longer than the unicity distance.
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4.3 Stream Ciphers

We now consider streams, as in §3.7, which are sequences in F2. We will have:

plaintext: p0, p1, p2, . . .

key stream: k0, k1, k2, . . .

ciphertext: z0, z1, z2, . . . where zn = pn + kn.

Here, every pi, ki, and thus zi is in F2, and addition is taken in F2.

Definition 4.8 (One-Time Pad)

Take (kn) to be an entirely random stream: independently and identically distributed random
variables with P[ki = 0] = P[ki = 1] = 1/2.

Then (zn) = (pn)+(kn) is also a sequence of independently and identically distributed random
variables which take values 0 and 1 with equal probability!

Without knowing the exact key stream (kn), deciphering the code is entirely impossible. A
one-time pad is such a key stream, so named because they were handed out for use only one
time, with the intention of being destroyed afterwards.

Of course, the code is easy to decipher if one does have the key, as (pn) = (zn) + (kn).

This code has perfect secrecy, but it has problems. How do we construct such a random sequence?
More importantly, how do we share knowledge of the key stream?

The first problem is surprisingly tricky in real life. The second problem is the same problem we
started with: if we could share a key reliably and privately, why not just share the message?

In most applications, this is not practical: we instead share k0, k1, . . . , kd−1 and construct the rest
of the key stream (kn) using a feedback shift register (3.43) of length d.

Proposition 4.9 (Eventual Periodicity)

Let (xn) be a sequence produced by a linear feedback shift register of length d. Then (xn) is
eventually periodic: there are integers M,N < 2d such that xr+N = xr for all r 󰃍 M .

Proof: Let vi = (xi, xi+1, . . . , xi+d−1), so f : Fd
2 → Fd

2 maps vi 󰀁→ vi+1. As f(0) = 0, if some
vi = 0 for i < 2d, then the sequence is all zeros from this point onwards, and this statement holds.

Otherwise, if all vi are non-zero for 0 󰃑 i < 2d, then v0, . . . , v2d−1 are 2d elements in Fd
2 \{0}. This

has only 2d − 1 elements, so by the pigeonhole principle va = vb for some 0 󰃑 a < b < 2d. Let
M = a and N = b − a. Then by definition vr = vr+N when r = M , and it follows by induction
that this holds for all r 󰃍 M (since if vk = vk+N , then vk+1 = f(vk) = f(vk+N ) = vk+1+N ).

Thus the sequence is eventually periodic. □
Corollary: For a general feedback shift register, this still holds, with the bound being M,N 󰃑 2d.

Note: The Berlekamp-Massey algorithm (discussed in §3.8) tells us that a one-time pad generated
in this way is unsafe at Level 2 of our three levels of attack (from Remark 4.4).

Stream ciphers are used frequently, because of how easy and cheap they are to generate and decode.
However, they have several issues; it is very hard to avoid them being decoded given sufficient time.

Adding output streams gives no advantage: if (xn) and (yn) are generated by LFSRs with feedback
polynomials P (X) and Q(X), then (xn+yn) is generated by P (X)Q(X). While (xnyn) is also the
output of an LFSR, xkyk = 0 around 75% of the time.
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Now, suppose we have three streams (xn), (yn), and (zn). We might try doing something clever,
by using one stream as a “flag” for which other stream to use.

kn =

󰀫
xn zn = 0

yn zn = 1

But this is actually also unhelpful! We can write kn = znyn + (1− zn)xn = xn + (xn + yn)kn, so
in fact (kn) is also a stream generated by an LFSR.

Stream ciphers are examples of symmetric cryptosystems, where the decryption algorithm is easily
deduced from the encryption algorithm. Indeed, in the case of a one-time pad (4.8), the algorithms
are exactly the same: add the key (kn) to the ciphertext!

We want something which is less vulnerable, and for that we turn to asymmetric cryptosystems.

4.4 Public Key Cryptosystems

The aim of a public key cryptosystem is to be asymmetric. We divide the key into two pieces:

1. a public key, used for encryption

2. a private key, used for decryption

The goal is to create an encryption system which is secure at Level 3 from Remark 4.4. In particular,
if an adversary knows the encryption and decryption algorithms, as well as the public key (but not
the private key), it should still be hard to find the private key and decrypt messages.

Note: Here, we avoid the problem of key exchange. In fact, we ideally do not share the private
key at all over any exchange, which means no adversary can steal it!

The idea is therefore to find “one-way problems”, in which an encryption computation is easy, but
the corresponding decryption computation is very hard without the private key. Furthermore, the
private key should not be easily computable from the public key!

We base these on difficult mathematical problems.

Remark 4.10 (One-Way Mathematical Problems)

One such problem is that of factoring. Given very large primes p and q, we form N = pq. It
is very easy to do so simply by multiplying two numbers together! However, suppose we are
merely given N , and told that it is the product of two very large primes. Now, we can’t do
anything except try prime numbers until we find something that works, and there are a lot
of possible primes to check!

This is a hard one-way problem, because we have a bijection between pairs of primes and a
set of specific numbers of the form N = pq, but computing one direction of this bijection is
very easy (multiply) but the other direction is very hard (guess and check).

Another such problem is that of the discrete logarithm. Suppose p is a large prime, and g is
a primitive root modulo p: that is, it generates (Z/pZ)×. Given x, can we find a such that
x ≡ ga (mod p)? This is very difficult to do, but the reverse (given g and a, can we compute
ga (mod p)?) is very easy!

Here, we are using a different definition of easy which focuses not really on how complicated
the mathematics is, nor how easy it is for a person to solve the problem, nor even how hard
it is to write code to solve the problem with a computer! Rather, we care about a measure of
asymptotic complexity: on a computer, are there algorithms which do not scale badly?

In fact, we can formalise this definition.
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Definition 4.11 (Polynomial Time Algorithm)

An algorithm with input size n is said to run in polynomial time if the number of operations
it takes to compute the output is bounded by c · nd for some constants c and d.

Note: If N is written in binary with B digits, then an algorithm for factoring N has an input size
of B = log2 N , not N .

Remark 4.12 (Polynomial Time Algorithms)

The class of problems solvable in polynomial time is called P. Problems in this class include:

• normal arithmetic operations on integers, like addition and division with remainders.

• computing the highest common factor of two numbers, using Euclid’s algorithm.

• modular exponentiation (computing xy modulo N), using successive squaring.

• testing primality, thanks to the AKS primality test developed in 2002: the first algorithm
to test primality to be general, unconditional, and run in polynomial time.

More importantly, there are no known algorithms to solve the problems of factoring or the
discrete logarithm from Remark 4.10.

The fastest known algorithms for factorisation involves testing every prime up to
√
N , which

takes a number of operations in O(
√
N) = O(2B/2) if N has B binary digits.

Likewise, for the discrete logarithm we use Shank’s “baby-step giant-step” algorithm. Taking
m = ⌈√p⌉, write a = qm + r with 0 󰃑 q, r 󰃑 m. Then ga ≡ gqm+r ≡ x (mod p), and so we
have gqm ≡ xg−r (mod p). We make lists for gqm and xg−r modulo p for all q and r, and
look for a match: this takes O(

√
p log p) operations.

RSA Laboratories, a computer security company founded by the three creators of the RSA
encryption system, offered large cash prizes until 2007 for the successful factorisation of a
number from their list of semiprimes (numbers of the form pq for distinct primes p and q).

As quantum computers get better, there are fears that they may break encryption systems.
Shor’s algorithm is an algorithm for factoring two integers which runs in polynomial time on
a quantum computer, but doesn’t work on a classical computer.

We now consider a particular cryptosystem.

Definition 4.13 (The Rabin Cryptosystem)

Our private key will be a pair of large distinct primes p and q which are both congruent to 3
modulo 4. Our public key will be N = pq.

We take M = C = {0, 1, . . . , N − 1}, and encrypt: e(m) ≡ m2 (mod N).

We should avoid m which are not coprime to N , as this could leak information about p and
q (which would be very bad). We should also avoid m <

√
N : with these m, we are simply

computing the regular square root!

Proposition 4.14 (Decrypting the Rabin Cryptosystem)

Suppose that p = 4k − 1 is prime, and that x2 ≡ d (mod p). Then given d, we can find its
square root x easily, using the solution x ≡ dk (mod p).
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Proof: This is easy if d = 0, so assume otherwise. Then:

d2k−1 ≡ x2(2k−1) ≡ xp ≡ 1 =⇒ (dk)2 ≡ d (mod p)

by Fermat’s Little Theorem, and so this indeed gives a solution. □
We can use this to decrypt a received message c under the Rabin cryptosystem! We take advantage
of the fact that we know the factorisation N = pq, and easily find x1 and x2 with:

x2
1 ≡ c (mod p)

x2
2 ≡ c (mod q)

using the above result. Then, the Chinese Remainder Theorem (4.19) yields an x with:

x ≡ x1 (mod p)

x ≡ x2 (mod q)

󰀬
=⇒ x2 ≡ c (mod N)

In fact, this x is easy to compute: we may run Euclid’s algorithm to find integers r and s with
rp+ qs = 1, and then use x ≡ (sq)x1 + (rp)x2 (mod N).

Proposition 4.15 (Uniqueness of Roots)

Let p be an odd prime, and d ∕≡ 0 (mod p). Then if x2 ≡ d (mod p) is solvable, it has exactly
two solutions (square roots).

If p and q are distinct odd primes with N = pq, and (d,N) = 1, then if x2 ≡ d (mod N) is
solvable, it has exactly four solutions.

Proof: Suppose x2 ≡ y2 (mod p). Then p | (x + y)(x − y), so p | x + y or p | x − y. This means
we must have x+ y ≡ 0 (mod p) or x− y ≡ 0 (mod p), so x ≡ ±y (mod p).

Now suppose x0 is a solution to x2 ≡ d (mod N). By the Chinese Remainder Theorem, there are
solutions with x ≡ ±x0 modulo p and q, which gives rise to four independent solutions by choosing
the ± in all 2× 2 possible ways. By the first uniqueness result, these are all the solutions. □
Corollary: When decrypting the Rabin code, we must compute all four possible solutions. Our
message should therefore include sufficient redundancy to make it clear which solution is intended.

Now, we want to comment on how good a cipher this is. In fact, we can make a quantitative claim
about the difficulty of cracking it! Recall from Remark 4.12 that factoring is a “hard” problem.

Proposition 4.16 (Rabin Difficulty Theorem)

Breaking the Rabin code is “as difficult as” factoring N . That is, if we have an “oracle” which
can factor numbers instantly, we can easily crack the Rabin code, and if we have an oracle
which can crack the Rabin code, we can use it to easily factor numbers.

Proof: If we can factor N = pq, then we have broken the code, since we can simply decrypt the
code as if we were the intended recipient! It remains to show the converse.

Suppose we can break the Rabin code: in particular, this gives an algorithm for extracting square
roots modulo N . We choose x (mod N) at random, and use our algorithm to find a y satisfying
x2 ≡ y2 (mod N), since we can do this easily. Then with probability 1/2, x ∕≡ ±y (mod N), since
there are four square roots of x2 modulo N . Then (x− y,N) is a non-trivial factor of N .

We can repeat this with new random choices of x to keep halving our probability of failure, and
thereby give ourselves arbitrarily high success probability of finding p or q. □
Note: More formal discussion of this sort of “reducibility of problems” can be found in the course
II Automata and Formal Languages.
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4.5 RSA Encryption

The RSA encryption scheme, named for its creators Rivest, Shamir, and Adelman, is perhaps the
most famous cryptosystem in the world. It is another asymmetric cryptosystem, which again uses
the property of factorisation being difficult.

Note: As with a lot of cryptography, we use results from courses like IA Numbers and Sets and
II Number Theory. Proofs of these results are omitted and non-examinable.

Definition 4.17 (Euler Totient Function)

For integers N , the Euler Totient Function φ(N) is the number of integers less than N which
are coprime to N : φ(N) = # {1 󰃑 x 󰃑 N : (x,N) = 1}.

Theorem 4.18 (Euler-Fermat Theorem)

If x is coprime to N , then xφ(N) ≡ 1 (mod N).

Theorem 4.19 (Chinese Remainder Theorem)

Suppose we are given integers m1 . . .mk such that mi > 1 for all i, and (mi,mj) = 1 for all
i ∕= j. Then for any given integers a1, . . . , ak, the simultaneous congruence

x ≡

󰀻
󰁁󰁁󰀿

󰁁󰁁󰀽

a1 (mod mi)
...

ak (mod mk)

has a solution which is unique modulo M =
󰁔

mi.

Proof: In IA Numbers and Sets and II Number Theory. □
Now, we are ready to set up the RSA cryptosystem!

Suppose we have N = pq for large distinct primes p and q. Then φ(N) = (p− 1)(q − 1). We pick
an integer e which is coprime to φ(N). We solve for d such that de ≡ 1 (mod φ(N)). This is easy
to do if we know N = pq: subtraction and multiplication to find φ(N) is trivial, and we can solve
for d easily using Euclid’s algorithm.

Then our public key is (N, e) and our private key is (N, d). For any m coprime to N , we encrypt:

m 󰀁→ c where c ≡ me (mod N)

c 󰀁→ m where m ≡ cd (mod N)

How do we know that this works? Well, given some c ≡ me (mod N), we write:

cd ≡ (me)d ≡ mde ≡ m1 ≡ m (mod N) ∵ de ≡ 1 (mod φ(N)) by Theorem 4.18.

(We suppose here that c and N are coprime, which is true if m was generated correctly.)

Note: With this scheme, one never shares the private key! This is a very clever use of asymmetry:
it is hard to find d merely given e, and so the private key remains secret.

Now, we want to prove a theorem about RSA. We will use the notation Op(x) to denote the order
of x in (Z/pZ)×, which is the cyclic group of the p− 1 elements {1 . . . p− 1} under multiplication,
which is also denoted by F×

p = Fp \ {0} (the non-zero elements of the field of p elements).
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Theorem 4.20 (Semiprime Order Theorem)

Let N = pq for distinct odd primes p and q. Suppose that φ(N) | 2ab, with integers a and b
such that b is odd. Furthermore, let x be coprime to N , with 1 󰃑 x < N .

Then if Op(x
b) ∕= Oq(x

b), there exist some 0 󰃑 t < a such that the greatest common divisor

of x2tb − 1 and N is in fact a non-trivial factor of N . That is, x2tb divides by p or q.

Moreover, the number of x satisfying Op(x
b) ∕= Oq(x

b) is at least φ(N)/2.

Proof: Let y ≡ xb (mod N). By the Euler-Fermat Theorem, y2
a ≡ (xb)2

a ≡ xφ(N) ≡ 1 (mod N),
and so Op(y) and Oq(y) are both powers of 2.

If this were not true, then the order of y modulo N (which is the product of Op(y) and Oq(y))
could not be a factor of 2a, which is a contradiction.

We are given that they are not equal, and so we have y2
t ≡ 1 (mod p) without loss of generality

(possibly swapping p and q). This gives the highest common factor of y2
t − 1 and N as p, which

is non-trivial as required.

To show the second part, recall that (Z/NZ)× = {x+NZ : 1 󰃑 x < N, (x,N) = 1}. We want to
find the size of the set X =

󰀋
x ∈ (Z/NZ)× : Op(x

b) ∕= Oq(x
b)
󰀌
to be at least φ(N)/2.

But in fact φ(N) is the size of (Z/NZ)× by definition, and so we want to show that at least half
the elements in the group satisfy this relation.

We show that if we partition (Z/pZ)× into subsets according to the value of Op(x
b), then each

subset has a size of at most 1
2 |(Z/pZ)

×| = 1
2 (p − 1). This suffices to show the result, because if

y ∈ (Z/qZ)× then we must have:

#
󰀋
x ∈ (Z/pZ)× : Op(x

b) ∕= Oq(y
b)
󰀌
󰃍 1

2 (p− 1) =⇒ |X| 󰃍 1
2 (p− 1)(q − 1) = 1

2φ(N).

We exhibit a subset of (Z/pZ)× of size exactly half of the original set, which itself suffices to show
every partition is at most this large. Let g be a primitive root modulo p.

Then (gb)2
a ≡ 1 (mod p), and so Op(g

b) is a power of 2. If x = gδ, then xb = (gb)δ, and so we
must have:

Op(x
b) =

󰀫
Op(g

b) if δ is odd

󰃑 1
2Op(g

b) if δ is even

But then
󰀋
gδ (mod p) : δ is odd

󰀌
is the required subset! This proves that there is a partition of

(Z/pZ)× with the desired property, and so |X| 󰃍 1
2φ(N) as required. □

Corollary: Finding the RSA private key (N, d) from the public key (N, e) is essentially as difficult
as the problem of factoring N .

1. If we know how to factor N = pq, then we can find φ(N) very easily, then simply compute
d as e−1 modulo φ(N).

2. Conversely, if we know d and e, then φ(N) | de− 1. Then, writing de− 1 = 2ab and use the
above theorem to attempt to factor N using random choices of x. Since at least half the x
work, our chances of success become arbitrarily large very quickly.

Note: We have shown that finding the private key from the public key is as hard as factoring N .
This is not the same as proving whether decrypting an RSA message is this hard: there may be
some alternate method!

This is a very effective, near-unbreakable cryptosystem. However, it is computationally slow: the
calculations required are necessarily intense. Symmetric cryptosystems are often much faster, so
we are interested in the problem of key sharing.
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4.6 Key Exchange and Diffie-Hellman

For the problem of key sharing, or key exchange, Alice and Bob now wish to agree a secret key k for
communication. Once they have this key agreed, they can communicate using a shared symmetric
cryptosystem, which is faster and easier.

Adi Shamir (one of the creators of RSA) proposed the following system:

1. Alice and Bob publicly agree on some prime p.

2. Alice privately chooses 1 ∕= a ∈ (Z/pZ)× and computes a′ with aa′ ≡ 1 (mod p− 1).

3. Bob privately chooses 1 ∕= b ∈ (Z/pZ)× and computes b′ with bb′ ≡ 1 (mod p− 1).

4. Alice chooses some K to be the key and sends Bob m1 ≡ Ka.

5. Bob sends back m2 ≡ mb
1 ≡ (Ka)b ≡ Kab.

6. Alice sends back m3 ≡ ma′

2 ≡ (Kab)a
′ ≡ Kaa′b ≡ Kb.

7. Bob computes K ′ = mb′

3 ≡ (Kb)b
′ ≡ Kbb′ ≡ K.

So the parties have agreed on a shared key K, without ever having transmitted it! The messages
which were actually sent (and which Eve could therefore have seen) are m1, m2, and m3, which
are Ka, Kab, and Kb. This cannot be used to recover K without solving the discrete logarithm
problem, and so Alice and Bob are free to use K as the key for a symmetric encryption system!

Remark 4.21 (The Padlock Analogy)

The above system for key exchange works much like adding padlocks to a box. Alice has a
padlock of her own (exponentiating by a) and only she has the key (exponentiating by a′)
which unlocks this lock (reverses the operation. The same goes for Bob, with b and b′.

In real life, this might look like the below diagram. Even if Eve is able to intercept all the
boxes in transit and inspect them, they are all locked, and so she can’t do anything!
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We now consider one of the most famous key exchange methods, which is called the Diffie-Hellmann
key exchange algorithm, and is one of the most famous methods.

Let p be a large prime, and g be a primitive root modulo p.

1. Alice chooses a number α and sends gα (mod p) to Bob.

2. Bob chooses a number β and sends gβ (mod p) to Alice.

3. Both parties now compute k = gαβ = (gα)β = (gβ)α, and use this as their secret key.

Neither party knows both α and β, only their own, which means no attacker can steal all of the
information required to compute k. This system therefore works even if Alice and Bob communicate
only on a channel compromised by Eve!

To break this system and find k, Eve must compute gαβ using only g, gα, and gβ . It is conjectured
(but not strictly proven) that this is as hard as the discrete logarithm problem.

4.7 Signatures and Authenticity

We now consider another desideratum: message signatures. When Alice sends an encrypted secret
message to Bob, she may have multiple goals in mind.

1. Secrecy/Confidentiality: both Alice and Bob can be absolutely confident that no third party
has read the original unencrypted message.

2. Authenticity: both Alice and Bob can be absolutely confident that they are indeed talking
to each other, and not a third party.

3. Integrity: both Alice and Bob can be absolutely confident that no third party has tampered
with the original message.

Suppose Bob wants to be absolutely certain that the person with whom they are in communication
is Alice rather than an impostor. How might we achieve this using RSA?

If Alice’s private key is (N, d) and her public key is (N, e), then anyone can encrypt a message but
only Alice can decrypt it. We might think to “flip this around”, and get Alice to encrypt using
the private key (N, d): remember that RSA is entirely symmetrical in d and e.

In fact, this is how the process works! Bob picks some arbitrary message µ, and sends it to Alice
without encrypting it. Alice then encrypts this message using (N, d) as the encryption key (her
private key) and sends back the result. Then, anyone can decrypt this message, but that doesn’t
matter, since it was arbitrary! In particular, Bob can decrypt it using (N, e), and verify that the
result matches the original text µ.

The only way to create a message which decrypts to µ under the public key (N, e) is to have the
private key d, and so Bob knows that his interlocutor must be Alice!

We now consider the problem of integrity. First, why is this even important?

Remark 4.22 (Homomorphism Attack)

Suppose a bank creates a message of the form (m1,m2,m3), denoting the name of the client
m1, the amount of money $m2 to be credited to their account, and the password m3 of the
person authorising the transaction.

These messages are encoded using RSA as (z1, z2, z3) = (me
1,m

e
2,m

e
3) all modulo N using the

bank’s public encryption key (N, e). Only the bank can decrypt this code.

An attacker can enter into a transaction which credits $100 to their account. Then, they can
steal the encrypted password, or for example change z2 to z32 ≡ m3e

2 , stealing $1 million!
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Note: Even if an attacker didn’t know that RSA was being used, they could simply transmit the
same message repeatedly. We can prevent this attack vector by insisting that every message comes
with a timestamp.

So for integrity, we might want to consider the signature of a message, rather than the sender. We
suppose that all users have a private key and a public key. We want a signature map:

s : M×K → S where

󰀻
󰁁󰀿

󰁁󰀽

M is the set of all possible messages

K is the set of all possible keys

S is the set of all possible signatures

Alice signs a message m with s(m,KA), where KA ∈ K is her private key. Ideally, Bob can verify
that this is Alice’s signature using Alice’s public key K ′

A. The signature should therefore be a
trapdoor function: something which is very easy to do one way and very difficult to reverse, much
like in the discrete logarithm problem.

For example, we may use RSA. If Alice has private key (N, d) and public key (N, e), then she may
sign a message m with s = md (mod N). Anyone can verify that (m, s) is a valid signed message
using the public key (N, e), and therefore knows that Alice has sent the message!

Definition 4.23 (Hash Function)

A hash function is a one-way function which is pre-image resistant and collision-resistant. In
particular, h : M → {1, . . . , N} is a hash function if:

1. Given a message m ∈ M, it is easy to hash the message and compute h(m).

2. Given 1 󰃑 H 󰃑 N , it is very difficult to recover the original message m with H = h(m).

3. Given two messages m1 ∕= m2 in M, the hashes h(m1) and h(m2) are different with an
extremely high probability.

In practice, these hash functions are constructed in such a way as to be “very non-local”, or
chaotic: tiny changes to the input message m (say flipping one bit of a binary string) makes
the resulting hash totally different in a very unpredictable way.

Hash functions are publicly known. Some of the most common ones are SHA-256 and MD5,
which use a large sequence of binary operations and “mixing up the data”.

Corollary: It is easy to check that some data input maps to a given hash value. However, if the
input data is unknown, it is deliberately very difficult to reconstruct.

Corollary: A hash function is a trapdoor function!

This is a huge advantage, because it allows us to check data integrity too! When Alice wants to
send a message to Bob, she encrypts her plaintext µ using Bob’s public key to create an encrypted
message m. She then computes the hash h(m) using the publicly agreed hash function, then uses
her own private key to encrypt h(m) to form the signature. She then sends m and s. Bob can:

1. Decrypt m using his own private key, and thus both parties are confident that only Bob is
able to read the original message µ.

2. Compute h(m) himself using the publicly agreed hash function.

3. Decrypt the signature using Alice’s public key. This should result in the hash h(m) which he
calculated. If there is a discrepancy, then he knows that either some message was corrupted,
or that he is not talking to Alice. But if there is a match, then he knows for sure that only
Alice could possibly have sent this message!

We therefore have a “perfect” system! Alice has total confidence that only Bob can see the message,
and Bob has total confidence that Alice sent the exact message µ he decrypted.
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An attacker Eve can read m and s, and can decrypt s into h(m) using Alice’s public key. She can
therefore also verify that the message came from Alice, but not read it. What if Eve wants to forge
a message from Alice? She could easily find h(m), but would need to sign it using Alice’s private
key, which is difficult.

Even if Alice finds a way to alter the message in transit (such as in the Homomorphism Attack
from Remark 4.22), any slightly changed version m′ of m changes h(m′) to something completely
unrecognisable, and so Eve could not sign the new hash with Alice’s private key.

Another common signature scheme is the ElGamal Signature Scheme, developed in 1985. As usual,
we take p to be a large prime and g to be a primitive root modulo p. Furthermore, we take the
function h : M → {1, . . . , p− 1} to be a collision-resistant hash function.

Alice first chooses a random integer 1 < u < p to be her private key, and then sets the public key
to be (p, g, y), where y ≡ gu (mod p). This is published for anyone to see.

When Alice wants to sign a message m, she chooses a random key 1 < k < p which is coprime to
p− 1, and finds k′ with kk′ = 1 (mod p− 1). She then calculates the two numbers:

r ≡ gk (mod p) s ≡ k′(h(m)− ur) (mod p− 1).

This s has the property that h(m) ≡ ur + ks (mod p − 1). She then sends the signature (r, s)
for the message m. In order to verify that Alice sent the original message, anyone can compute
v1 = yr · rs and v2 = gh(m), both modulo p.

Proposition 4.24 (ElGamal Check)

The signature (r, s) is valid for message m if v1 = v2.

Proof: We have v1 ≡ yr · rs ≡ (gu)r · (gk)s ≡ gur · gks ≡ gur+ks ≡ gh(m) ≡ v2 (mod p) if v1 and v2
are constructed correctly using the above signature scheme, where the crucial equivalence follows
from the relation h(m) ≡ ur + ks (mod p− 1).

It is harder to show that this signature is difficult to forge. Given some m, there is no other m
with the same v2 = gh(m), so the attacker can only choose r and s. But this only works out to the
correct v1 if r and s match the correct values, which can only be calculated knowing u. □
Note: Of course, like any signature scheme, this is vulnerable to replay attacks, where an attacker
simply repeats a message they’ve already seen transmitted with the corresponding signature! To
combat this attack, we can insist that each message comes with a “nonce” (number used once, like
a timestamp), which allows the recipient to ensure each message only comes through one time.


