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1 Basics

1.1 Graphs

Graph theory is really a subfield of combinatorics, an area of mathematics focused on problem-
solving which comes up in a range of situations from machine learning to quantum field theory.

Definition 1.1 (Graph)

A graph G is an ordered pair of two sets:

1. the vertices V (also known as nodes), and

2. the edges E, where the elements of E are of the form {{x, y} | x, y ∈ V with x ∕= y}.

In this course, we focus mainly on finite graphs: unless otherwise stated, V and E are finite.

This definition lends itself to a canonical diagramattic representation for a graph. We draw the
vertices as little circles, and draw a line representing each edge between the two points it connects.

Example 1.2 (Basic Graphs)

One type of basic graph is called a path, written Pn for the path of n edges. This is given by
V = {1 . . . n} and E = {{1, 2} , {2, 3} , . . . , {n− 1, n}}. For example, here is P5:

54321

Another common graph is called a cycle, written Cn (for n > 2). This is like a path, but it
loops back around to the start (ie. E also contains {n, 1}). Here is C6:

2

3

45

6

1

We also have Kn, the complete graph on n vertices, with every possible edge. Here is K4:

1 2

34

Lastly, we have En, the empty graph, which has no edges. Here is E3:

321

There are, of course, more types of graph, but these are the most basic and most common.
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Note: We usually write ab as shorthand for the edge {a, b} ∈ E.

Note: There are some limitations inherent to this definition. The stipulation x ∕= y precludes
loops (as a vertex cannot be connected to itself), E being a set precludes multiple edges between
a single pair of vertices, and the elements of E being unordered precludes directed edges.

Definition 1.3 (Order and Size)

The order of the graph G = (V,E) is the number of vertices (that is, |G| = |V |). When we
want the size of the graph, which is the number of edges, we write e(G) = |E|.

In a lot of cases, these are easy to calculate. Thinking back to our four basic examples, we have

1. |Pn| = n and e(Pn) = n− 1

2. |Cn| = n and e(Cn) = n

3. |Kn| = n and e(Kn) =
1
2n(n− 1)

4. |En| = n and e(En) = 0

In general, when xy is an edge, we say x and y are adjacent, or neighbours. More generally, the
neighbourhood of a vertex x is the set Γ(x) of vertices adjacent to it. The degree of x is the size of
its neighbourhood. For example, every vertex in Kn has degree n− 1.

Note: The degree sequence of a graph is then the list of degrees of its vertices. For example, P4

has degree sequence 2, 2, 1, 1. The sum of the degree sequence of a graph must be an even number:
specifically, twice the number of edges.

Now, let’s look at isomorphisms between graphs. The basic idea is to regard graphs to be equivalent
if they have the exact same structure. This gives us a natural definition:

Definition 1.4 (Graph Isomorphism)

Two graphs G = (V,E) and H = (V ′, E′) are isomorphic if there exists a bijection f : V → V ′

such that xy ∈ E ⇐⇒ f(x)f(y) ∈ E′. f is then a graph isomorphism.

We now look at subgraphs. We can generate subgraphs by optionally removing some vertices from
G, removing all edges to and from those vertices, then removing some more edges if desired.

Definition 1.5 (Subgraph)

We say H = (V ′, E′) is a subgraph of G = (V,E), and write H 󰃑 G, if

1. V ′ ⊆ V and E′ ⊆ E.

2. H is a graph in its own right.

Example 1.6 (Subgraph)

A subgraph might look like:

󰃍
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When dealing with subgraphs, we often use the notation G+ xy to denote “adding” the edge xy.
Similarly, G− x can be used to remove a vertex (and its edges).

Definition 1.7 (Regularity)

A graph G is k-regular if every vertex has degree exactly k. Paths are generally not regular,
but cycles are 2-regular.

1.2 Connectedness

We want to gain an understanding of how connected graphs are: in what ways can you travel
between vertices along the edges of the graph? To do this, we look at paths.

Definition 1.8 (Path)

A path in G is a sequence of distinct vertices x1 . . . xn such that x1x2, x2x3, and so on are all
edges. If a path starts at x1 = x and ends at xn = y, we call it an x-y path of length n.

A graph is then called connected if there is an x-y path for every pair of vertices.

Example 1.9 (Connectedness)

The graph on the left is connected, and the highlighted edges show a path between the vertices
labelled x and y. By contrast, the subgraph on the right is disconnected, due to the removal
of a vertex and four edges: the equivalent x′ and y′ do not have a path between them.

x

y

x′

y′

Proposition 1.10 (Graph Connectedness)

Define the relation ∼ on the vertices of a graph G to mean x ∼ y if and only if there exists
an x-y path. Then ∼ is an equivalence relation.

Proof: (Sketch) Of course, reflexivity and symmetry are obvious. Transitivity is actually not
obvious, since a simple concatenation might reuse edges (which is prohibited). However, the
relation is indeed transitive, you can shorten the two paths until they meet at a unique point. □
The connected components of a graph are the equivalence classes under ∼. The right graph in the
last example would have two connected components, containing x′ and y′.

Definition 1.11 (Walk)

A walk is similar to a path, but listed in terms of the vertices and edges the path travels along
rather than simply being a list of edges.

Under our definition of graphs, where there is no self-adjacency and no repetition in a path,
these two definitions are in fact equivalent.
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1.3 Trees

We now consider a special type of graph, known as a tree.

Definition 1.12 (Tree)

A tree is a connected graph which is acyclic (doesn’t contain any cycles). A leaf is a vertex
of a tree which has degree 1.

leaf

Proposition 1.13 (Properties of Trees)

Let G be a graph. Then the following are equivalent:

1. G is a tree.

2. G is a maximal acyclic graph (adding any edge creates a cycle).

3. G is minimally connected (removing any edge disconnects G).

Proof: (1 ⇒ 2) G is acyclic and connected by definition. Take any x and y such that xy is not an
edge. But G is connected, so there is an x-y path. Thus adding the edge would create a cycle.

(2 ⇒ 1) G is acyclic by definition. If x and y are not connected, then G+xy is a supergraph which
is connected and still acyclic.

(1 ⇒ 3) G is connected by definition. Suppose G−xy is still connected. Then there is an x-y path
P such that xy /∈ P . But then there must be a cycle P + yx, which is a contradiction.

(3 ⇒ 1) G is connected by definition. Suppose G contains some cycle C. Choose an edge xy ∈ C,
and consider G − xy. For vertices a and b of G − xy, consider a path P connecting them: if xy
appears in this path, then replace it with the rest of C. Then a and b are still connected, so G−xy
is connected, contradicting minimality. □

Proposition 1.14 (Existence of Leaves)

Every tree with order at least 2 has a leaf.

Proof: Suppose not. Then take a path of maximal length. Then take the end vertex of the path:
it must be connected to another vertex which isn’t just the previous vertex of the path, but then
adding this vertex to the path either creates a cycle or extends the path, contradicting maximality.
In fact, this proof shows that the graph must have at least two leaves, as the same argument works
for the start vertex. (In fact, Pn has exactly two leaves.) □

Proposition 1.15 (Size of Trees)

Let T be a tree of order n. Then e(T ) = n− 1.
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Proof: Given G = (V,E), write G(W ) for the subgraph spanned by W ⊆ V , and G − x for
G(V \ {x}). We induct on n: the proposition is trivial for n = 1 and n = 2. If T is a tree of order
n, choose a leaf x and consider T − x. This is acyclic, because we have removed a vertex and an
edge (which cannot remove a cycle), and connected (no path between two other vertices can have
used the single edge connected to x). Then T − x is a tree with n − 1 vertices, and so by the
induction hypothesis has n− 2 edges. So T has one extra edge, ie. n− 1 edges, as required. □

Definition 1.16 (Spanning Tree)

A spanning tree on a graph G is a subgraph of G which is a tree and has all the same vertices.

Proposition 1.17 (Existence of Spanning Trees)

Every connected graph has a spanning tree.

Proof: A tree is a minimal connected graph. Take the connected graph and remove edges until it
is minimal connected, and you are left with a tree. □

Definition 1.18 (Distance)

For a graph G = (V,E), the graph distance function d is defined as

d : V × V → R󰃍0 ∪ {∞} : (x, y) 󰀁→
󰀫
minimum x-y path length if one exists

∞ otherwise

In fact, this is a metric! The diameter of G is the maximum distance between two vertices.

Definition 1.19 (Forest, Bridge, Cutvertex)

A forest is an acyclic graph. As such, a forest is a graphG in which every connected component
of G is a tree.

A bridge is an edge xy in a connected graph such that G − xy is disconnected. Similarly, a
cutvertex is a vertex x in a connected graph such that G− x is disconnected.

Note: If G has a bridge then it has a cutvertex, but the converse is not true. This is not obvious:
for example not every vertex to which a bridge is indicent is a cutvertex, as it may have degree 1.
However, using induction, this holds for trees, and using the fact that every graph has a spanning
tree completes the proof.

1.4 Bipartite Graphs

We now look at another special type of graph: bipartite graphs. As the name implies, these graphs
have two distinct parts, and edges are between these parts rather than within them.

Definition 1.20 (Bipartite Graph)

A graph G is bipartite if V = V1 ∪ V2 such that V1 ∩ V2 = ∅ and for all edges xy ∈ E,
x ∈ V1 ⇐⇒ y ∈ V2. These subsets are sometimes called the vertex classes.

Note: Later, we will meet the more general notion of an r-partite graph (Definition 3.9).
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Example 1.21 (Bipartite Graph)

The following graph is bipartite, with V1 and V2 coloured differently.

On the other hand, C5 (or any odd cycle) is obviously not bipartite.

The complete bipartite graph Km,n is the graph where |V1| = m, |V2| = n, and every possible
edge is present. It has order m+ n and size mn. K2,3 looks like this:

Proposition 1.22 (Only even cycles are bipartite)

For all n, the cycle C2n is bipartite but the cycle C2n+1 is not.

Proof: For any bipartite graph, we must have
󰁛

v∈V1

deg v =
󰁛

v∈V2

deg v = e(G)

as each edge is counted exactly once in each vertex class.

In a cycle, every vertex has degree 2, so we have |V1| = |V2|. This is obviously not possible for odd
cycles, so these cannot be bipartite.

In contrast, even cycles are clearly bipartite: choose alternating vertices as the vertex classes.
All edges take the form xixi+1 (or x2nx1), which means all edges are indeed between edges with
opposite parity. □

Definition 1.23 (Circuit)

A circuit in G is a closed walk (akin to a cycle, but with repeated vertices).

Proposition 1.24 (Bipartite Cycle Criterion)

G is bipartite if and only if it contains no odd cycles.

Proof: Any odd circuit contains an odd cycle. This can be shown by induction. First, it is true for
n = 3. In general, if we have a circuit of distinct vertices, we are done. If not, there is a repeated
vertex: say

C = x1 . . . xazxa+2 . . . xbzxb+2 . . . xk

Now, take the circuits

C1 = x1 . . . xazxb+2 . . . xk and C2 = zxa+2 . . . xbz

These have length less than that of C, and one of them must have odd length. By induction, there
is an odd cycle, and so C must have contained one too.
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If bipartite G contains an odd cycle, there exists an odd cycle which is bipartite (clearly false).

Now, we show that if G has no odd cycles, then it is bipartite. Assume that it is connected: if not,
we can simply apply this proof to a connected component of it.

Fix x1 ∈ V . Define V1 to be the set {x ∈ V : d(x, x1) odd}, and V2 = V \ V2. This is a biparti-
tion. If x was adjacent to y, and d(x, x1) ≡ d(y, x1) mod 2, then there would be an odd circuit
x1 . . . xy . . . x1. Thus there would be an odd cycle, a contradiction. □

1.5 Planarity

We now look at a property of graphs which has come to mind when drawing them on the page.
It seems like some graphs are able to be drawn nicely on a page, with no lines crossing. However,
others seem to always need lines crossing over each other: there is no way to embed them neatly
into a plane. Let us formalise this intuition.

Definition 1.25 (Planar Graph)

A planar graph is a graph which can be drawn on the plane with no pair of edges crossing.
For example, K4 is planar, despite the basic drawing containing a crossing in the centre.

The drawing on the right shows an embedding with no crossings.

Paths and cycles are planar, but it’s surprisingly difficult to find a general criterion!

Definition 1.26 (Face)

The faces of a plane graph G are the connected components of the plane R2 \G (that is, the
entire plane except for the point vertices and line edges).

The boundaries of these faces are the edges to which they are adjacent.

Example 1.27 (Faces)

The following graph drawing has four faces (note that the exterior is included).

F3

F2
F1

F4 (exterior)

F1 has a boundary given by a 4-cycle, as does F2. F3 has a boundary given by a 3-cycle,
while F4 (the exterior) is bounded by a 5-cycle.

(Note that boundaries are not always cycles, especially in disconnected graphs.)
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Unfortunately, the definitions of planar graphs, faces, and so forth have hitherto been somewhat
vague. Let’s formalise them.

First, we define a polygonal arc. For two points x, y ∈ R2, we say that a polygonal arc from x to y
is a finite union of closed straight-line segments x1x2, x2x3, and so on up to xk−1xk. We enforce
x = x1 and xk = y, and that every segment is disjoint except for specific endpoints (ie. x2x3

intersects x3x4 at x3 only).

Next, a drawing of a graph G where V (G) = {v1 . . . vn} is defined by a set of distinct points
x1 . . . xn ∈ R, together with, for each edge vivj ∈ E, a polygonal arc from xi to xj .

For two points a and b in R2, we say a ∼ b if there is a polygonal arc in R2 \ G from a to b.
The equivalence classes of this connection relation are the connected components, or faces. The
boundary of a face F consists of G intersected with the closure F̄ .

We assume the basic topology of R2. We know that the boundary of a face consists of vertices and
line segments. It is then easy to show, for example, that a cycle has two faces, and that every tree
is planar with exactly one face.

Remark 1.28 (Similar Drawings ∕= Isomorphism)

Drawings of isomorphic graphs can be genuinely different!

∼=

The two graphs here are isomorphic, with the same points in the same places. Nevertheless,
the left version has a face in the centre with a 6-cycle as its boundary, whereas the right
version doesn’t.

Theorem 1.29 (Euler’s Formula)

Let G be a connected plane graph with n > 0 vertices, e edges, and f faces. Then

n− e+ f = 2

Proof: The empty graph E1 has one vertex, one face, and zero edges, so the formula holds.

If G contains a cycle C, then choose an edge xy on C. Then G′ = G − xy is still connected, and
the number of faces decreases by 1. Then the number of faces and edges have both decreased in
tandem, and so the formula still holds.

If G contains no cycles, then it is a tree (since it is connected). Then e = n− 1, and f = 1, so the
formula holds. □
Corollary: Suppose G is planar with |G| 󰃍 3. Then e 󰃑 3n− 6.

Proof: Without loss of generality, assume G is connected. (If not, we can add edges to get a
connected graph.)

Draw G in the plane with no edges crossing. Note that each face is bounded by at least three
edges, and each edge is adjacent to exactly two faces. This gives us

3f 󰃑
󰁛

f a face

number of edges adjacent to f 󰃑 2e

and since f = 2− n+ e by Euler’s Formula (1.29), we have e 󰃑 3n− 6 as required. □
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Corollary: Kn is not planar for n > 4.

Proof: e(Kn) = n · (n− 1)÷ 2 > 3n− 6 when n > 4. □
Corollary: K3,3 is not planar either.

Proof: Bipartite graphs have no odd cycles, so each face is bounded by at least four edges. This
means the inequality obtained is stricter: in fact 4f 󰃑 2e, and so e 󰃑 2n− 4, which does not hold
for K3,3 (where e = 9 and n = 6). □

Definition 1.30 (Subdivision)

A subdivision of a graph G is a graph Ĝ obtained by replacing some or all edges of G with
disjoint paths.

The graph on the right is a subdivision of the graph on the left.

Proposition 1.31 (Subdivisions Preserve Planarity)

A graph G is planar if and only if any subdivision of it is planar.

Proof: This is obvious by a drawing argument. To draw a subdivision of G in a planar fashion, or
to draw G given a planar drawing of a subdivision of G, simply ignore the extra/missing vertices,
and draw the polygonal arcs at the same points! □
Finally, we have the capstone theorem of this section: the necessary and sufficient condition for
proving whether or not a graph is planar.

Theorem 1.32 (Kuratowski’s Theorem)

A graph G is planar if and only if it does not contain as a subgraph any graph isomorphic to
a subdivision of K5 or K3,3.

Proof: Omitted. □
This is our necessary and sufficient condition! To prove a graph is planar, just draw it. To prove
a graph is non-planar, find a subgraph which is a subdivision of K5 or K3,3.
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2 Connectivity and Matchings

Definition 2.1 (Independence of Edges, Matching)

Take a bipartite graph G = (X ∪Y,E). Then a set of edges is independent if none of its edges
have any vertices in common. A matching from X to Y is consists of |X| independent edges.
Alternatively, this is a set of edges {xf(x)} ⊆ E, where f : X → Y is injective.

When does G have a matching? We use what’s known as “mathmaker” terminology, which comes
from a somewhat less progressive era, and names

X = {boys} and Y = {girls}

where we say there is an edge xy if and only if Boy x and Girl y know each other. We want to
“marry” each boy to a girl he knows. This is impossible if:

1. |X| > |Y | (there are more boys than girls)

2. there is a boy x ∈ X with deg(x) = 0 (who doesn’t know anyone)

3. if there are distinct boys x1, x2 ∈ X with Γ(x1) = Γ(x2) = {y} for some girl y (if two boys
only know the same one girl)

Now suppose we have some subset of boys A ⊆ X. We write Γ(A) =
󰁖

x∈A Γ(x). Of course, we
require |Γ(A)| 󰃍 |A| for this subset to have a matching. Less obviously, this is the only restriction!

Theorem 2.2 (Hall’s Marriage Theorem)

Let G = (X ∪ Y,E) be a bipartite graph. Then G has a matching from X to Y if and only if

|Γ(A)| 󰃍 |A| ∀A ⊆ X.

Proof: (⇒) Take some subset A ⊆ X. If the matching edges are x1y1, x2y2, . . . then we certainly
know {y1, y2 . . .} ⊆ Γ(A), and so Hall’s condition is met.

(⇐) Noting that the |X| 󰃑 2 cases are obvious, induct on the size of X.

Suppose first that for all nonempty A ⊊ X such that |Γ(A)| > |A|. Then we can take x ∈ X and
y ∈ Γ(x), and construct G− x− y. Note that this satisfies the criterion by inductive assumption.

|ΓG′(A)| 󰃍 |ΓG(A)|− 1 󰃍 |A|

We have a matching in G′ from X \ {x} to Y \ {y}. Together with xy, which exists as y ∈ Γ(x),
we get a new matching.

In the other case, we have some nonempty A ⊊ X with |Γ(A)| = |A|. Let B = Γ(A), G1 = G[A∪B]
and G2 = G[(X \A) ∪ (X \B)] (both bipartite).

First, G1 has a matching from A to B. For C ⊆ A, we have |ΓG(C)| = |ΓG1
(C)| 󰃍 |C|.

Next, G2 has a matching from (X \A) to (X \B), by pretty much the same argument.

Putting these two matchings together gives us a matching in G from X to Y . □
Corollary: A matching of deficiency d in a bipartite graph G = (X ∪ Y,E) contains |X| − d
independent edges. G has a matching of deficiency d from X to Y if and only if every subset
A ⊆ X satisfies the condition |Γ(A)| 󰃍 |A|− d.

Proof: (⇒) Obvious.

(⇐) Form G′ by adding d new points to Y , each with neighbourhood X. There is then clearly a
matching in G′, giving a matching of deficiency d in G. □
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Note: In the boys and girls scenario, we add d imaginary girls to Y , known to all boys. By the
above theorem, we have a matching whereby at most d boys are paired with imaginary girls (and
so at least |X| 󰃍 d are paired with real girls).

Definition 2.3 (Transversal)

Consider a family S1 . . . Sn of finite subsets of X . Then a system of distinct representatives
(SDR), or a transversal, is a set of distinct x1 . . . xn such that xi ∈ Si for all i.

Corollary: The sets S1 . . . Sn have a transversal if and only if

󰀏󰀏󰀏󰀏󰀏
󰁞

i∈A

Si

󰀏󰀏󰀏󰀏󰀏 󰃍 |A| ∀A ⊆ {1, 2, . . . , n}

Similarly, we say that there is a transversal of deficiency d if we can replace |A| by |A|− d.

Note: This corollary is equivalent to Hall’s Marriage Theorem (2.2), since a matching in a bipartite
graph with vertex classes X and Y is a transversal of the neighbourhoods {Γ(x) : x ∈ X}.

Example 2.4 (Group Cosets)

Let G be a finite group with H 󰃑 G a subgroup of index |G : H| = n. Take the left cosets
and right cosets and represent them as

L1 . . . Ln = g1H . . . gnH and R1 . . . Rn = Hg′1 . . . Hg′n

Can we choose representatives of the Li whicha re also representatives of the Ri?

We want to pick g1 . . . gn such that g1H . . . gn are the left cosets and Hg1 . . . Hgn are the right
cosets (up to rearrangement). Equivalently, we need to pick a permutation π of {1 . . . n} such
that Li ∩Rπ(i) ∕= ∅ for all i.

By Hall’s Marriage Theorem, we need only show that |Γ(A)| 󰃍 A for all A ⊆ X. But the size
of the union of the Li is |A| |H|, so the union meets at least |A| right cosets (which are all of
size |H|). Therefore yes we can!

Now, we want to better quantify connectivity. For example, Cn is connected, and removing any
vertex leaves Pn−1, which is still connected. Pn is also connected, but removing any non-endpoint
vertex disconnects it.

Similarly, taking the cube graph, removing any two vertices does not disconnect the graph, but
removing three can (by removing the three vertices adjacent to a reference vertex).

Definition 2.5 (Connectivity)

For a graph G where |G| 󰃍 1, the connectivity κ(G) is the size of the smallest set S ⊆ V such
that G−S is either disconnected or a single point. If κ(G) 󰃍 k, then we say G is k-connected.

Example 2.6 (Connectivity)

Any tree T is 1-connected but not 2-connected.

Cycles Cn are 2-connected but not 3-connected.

The cube is 3-connected.

Kn is n− 1-connected.
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2.1 Menger’s Theorem

It is sometimes the case that removing a vertex makes the graph more connected. For example,
see the graph on the left below and its subgraph on the right.

x

Here, the graph on the left is 1-connected but not 2-connected (removing the highlighted vertex
would disconnect the graph). However, by removing the vertex labelled x would create the graph
on the right, which is in fact 3-connected.

The connectivity of a graph is at most the “minimum degree” δ(G) = inf {deg(x) : x ∈ V }. This is
because one can choose the neighbourhood of some x with that degree, and remove all the vertices
in said neighbourhood.

In the same way that G being connected means there is an a-b path for every vertex pair in G, it
would be nice if G being k-connected means that there are k such independent paths. (Here, two
paths are independent if their intersection is just {a, b}).

Definition 2.7 (Separator)

Given distinct vertices a and b in a graph G, we say that the set S ⊆ V (G) \ {a, b} separates
a and b if they are in different connected components of G − S, or equivalently if every a-b
path intersects S somewhere.

a

b

a

b

In this graph, the highlighted vertices form a separator. When you remove them to get the
graph on the right, a and b no longer have a path between them.

This brings us to a significant result.

Theorem 2.8 (Menger’s Theorem)

For a graph G = (V,E), let a and b be distinct non-adjacent vertices. Then if every separator
S ⊆ V of a and b has size at least k, then there is a family of k independent a-b paths.

Remark 2.9 (Notes on Menger’s Theorem)

Before we prove this theorem, we first note a few things.

1. The converse is trivial: any separator contains at least one point from each of k paths.

2. It is equivalent to state that the minimum size of any a-b separator is the maximum
number of independent paths. (This is similar to the “max-flow-min-cut” theorem).

3. The non-adjacency criterion is needed to allow the existence of a separator at all. If x
and y are adjacent, in fact no set separates them, since the path xy of length 2 exists.

4. In fact, this is a generalisation of Hall’s Marriage Theorem (2.2).
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Given bipartite G = X ∪ Y satisfying the Hall criterion, form G′ by adding vertices s and t joined
to all of X and Y respectively.

Then G has a matching if and only if G′ has a family of |X| independent s-t paths, so it is enough
to check that every separator has size at least |X|. Take a separator S with A = S ∩ X and
B = S ∩ Y . Then Γ(X \A) ⊆ B, so |S| = |A|+ |B| 󰃍 |Γ(X \A)|+ |A| 󰃍 |X \A|+ |A| = |X|.

Now, let’s get to the actual proof of the theorem!

Proof: Noting that the k = 1 case is clear, assume k 󰃍 2. Now, k is the minimum size of an a-b
separator, and we seek k independent paths from a to b.

Suppose, by way of contradiction, that this is not possible. Choose a minimal counterexample,
with a smallest working k and the minimum edges for that k. Let S be a separator of that size.

Suppose first that there is a separator S ∕= Γ(a) with S ∕= Γ(b). Form the graph G′ from G by
replacing the component of G − S containing a by a single point a′ adjoined to all of S. Then
e(G′) < e(G), otherwise Γ(a) ⊆ S and hence Γ(a) = S.

In G′, there is no separator of size less than k, otherwise this set would also separate a and b in G.
So by minimality, there exist k paths in G′. This gives you k paths P1 . . . Pk from b to S disjoint
except at b. Similarly, we have Q1 . . . Qk from a to S disjoint except at a.

No Pi and Qj can meet except at S, so we can join them to make k independent paths in G.

Suppose that every a-b separator of size k is equal to either Γ(A) or Γ(b). Observe that these
two neighbourhoods are disjoint, otherwise take x ∈ Γ(b) ∩ Γ(a) and consider G′ = G − x. All
separators in G′ have size at least k − 1, as with x they separate a and b in G. By minimality
of k, there are k − 1 independent paths in G′. Then you can add axb as another path to make k
independent paths in G.

Now consider a shortest path from a to b: ax1x2 . . . xrb. Take G′ = G − x1x2. Then G′ has a
separator S ∕= ∅ of size k− 1. Consider S ∪ {x1} and S ∪ {x2}: these are separators in G of size k.

As x1 /∈ Γ(b), S ∪ {x1} ∕= Γ(b). Similarly, S ∪ {x2} ∕= Γ(a). Then S ∪ {x1} = Γ(a) and S ∪ {x2} =
Γ(b). But then the intersection Γ(a) ∩ Γ(b) ∕= ∅, a contradiction. □
Corollary: Let G be a graph with more than one vertex. Then G is k-connected if and only if
there are k independent paths between any pair of vertices a and b. (“Vertex Menger”)

Proof: (⇐) G is certainly connected with more than k vertices. Also, for sets S ⊆ V with |S| < k,
G− S is connected, otherwise choose a and b in different components.

(⇒) If a and b are non-adjacent, just apply Menger’s Theorem (2.8). If they are adjacent, then
G′ = G− ab must have k − 1 independent paths. Then add the path ab to get all k. □

Definition 2.10 (Edge Connectivity)

For a connected graph G, define the edge connectivity of G to be

λ(G) = inf {|S| : S ⊆ E(G), G− S disconnected}

Then G is k-edge connected if and only if λ(G) 󰃍 k.

Note: This is not the same as connectivity! The graph on the left is 1-connected (with cutvertex
in blue) but 2-edge connected (no bridge). The converse is impossible (see the note after 1.19).
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Definition 2.11 (Edge-Disjoint)

If paths P1 . . . Pk from a to b have pairwise disjoint edges, then we say they are edge-disjoint.
This is a different condition to independence:

vertex in common

a b a b

The two highlighted a-b paths have a common vertex, so they are not independent. However,
they do not share any edges, so they are edge-disjoint.

Definition 2.12 (Line Graph)

The line graph L(G) is the dual version of a graph G. The vertex set VL is the edge set EG,
and two vertices in VL are adjacent if they share a vertex in G.

G

L(G)

For example, the graph on the left has 8 edges. Each maps to a vertex in the line graph on
the right, with adjacencies if and only if two edges meet n G.

Corollary: Let G = (V,E) be a graph with distinct a ∕= b ∈ V . Then the minimum size of the
set S ⊆ E separating a and b is the number of edge-disjoint a-b paths. (“Edge Menger”)

Proof: Form G′ from L(G) by adding a′ adjacent to every e ∈ EG incident with a ∈ G, and b′

similarly. If there is a family of independent a-b paths in G, there is an equivalent family of a′-b′

graphs in G′. Apply the previous corollary to G′: these are precisely the k edge-independent paths
we are looking for. □
Corollary: Let G be a graph with |G| > 1. Then G is k-edge connected if and only if there are k
edge-disjoint a-b paths for every pair of distinct vertices a ∕= b.

Proof: Obvious by previous corollaries. □
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3 Extremal Graph Theory

This section looks at graphs which satisfy some sort of maximal property.

Definition 3.1 (Eulerian Circuit)

An Eulerian circuit is a circuit (1.23) which passes through each edge of a graph exactly once.
A graph G which admits an Eulerian circuit is called Eulerian.

Example 3.2 (Eulerian Graphs)

The below graph is Eulerian: follow the numbered arrows to start and finish at the vertex
labelled x, passing through all nine edges.

1

2

3

4

5

6

7

8

9

x

Any graph with a bridge cannot be Eulerian, but the converse of this is false. (Unrelatedly,
the famous Königsberg graph, which has seven bridges of a different kind, is not Eulerian.)

Theorem 3.3 (Euler’s Theorem)

A connected graph is Eulerian if and only if every vertex has even degree.

Proof: (⇒) If an Eulerian circuit passes though a vertex x a total of k times, then d(x) = 2k.

(⇐) Suppose G is a minimal counterexample (fewest edges). That is: we have a connected graph
G with e(G) > 0 and d(x) even for all x, with G not Eulerian.

Let C be the longest circuit in G with no edges repeated. Note such a cycle exists: no vertex has
degree 1, so G cannot be a tree. Since G is not Eulerian, e(C) ∕= e(G). Let H be a component of
G− E(C) with e(H) > 0: one must exist, as not all edges of G are in C.

Now, every vertex in H has even degree, so H has an Eulerian circuit C ′ by minimality. But then
we can combine C and C ′, since they are disjoint and meet at a vertex (as G is connected) to get
a longer circuit with no repeated edge, which contradicts C being the largest circuit. □

Definition 3.4 (Hamiltonian Graph)

A Hamilton Cycle in a graph G is a cycle which visits each vertex exactly once. A connected
graph with such a cycle is called Hamiltonian.

Much like previous questions like the subgraph problem, we might wonder if there exists a nice
necessary and sufficient condition for a graph to contain such a Hamiltonian cycle. Unfortunately,
there is not. The problem of finding one is in fact a special case of the famous Travelling Salesman
Problem, and is therefore NP-complete.
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Definition 3.5 (Complement)

For a graph G, we can define the complement graph Ḡ as the graph with the same vertices
but the opposite edges: a and b are adjacent in G′ if and only if they are not adjacent in G.

Note: Clearly, any vertex x with degree 1 prevents G from being Hamiltonian.

Recall the minimum degree δ(G) = inf {d(x) : x ∈ V } of a graph G.

Is there a value of δ(G) which ensures G is Hamiltonian?

Theorem 3.6 (Dirac’s Theorem on Hamiltonian Cycles)

Every graph G of order n 󰃍 3 with δ(G) 󰃍 n/2 is Hamiltonian.

Proof: Assume G is a counterexample. Note that G is connected. Suppose x and y are not
adjacent. We know that Γ(x),Γ(Y ) ⊆ V \ {x, y} and that |Γ(x)| , |Γ(x)| 󰃍 n/2. This means that
the intersection of the two neighburhoods is non-empty, by the pigeonhole principle.

Let P = x1x2 . . . xl be the longest path in G, so l 󰃍 3. Note that G does not have an l-cycle: if
l = n then we’re done, otherwise as G is connected there is a vertex x connected to the cycle from
outside it, giving a path on l + 1 points. Then xlx1 /∈ E.

Suppose we have a 1 󰃑 i < l such that there is an xi-xl path and an xi+1 − x1 path. This would
form the cycle x1 . . . xixlxl−1 . . . xi+1x1.

Define Γ+(xl) = {xi : xi−1 ∈ Γ(xl), 2 󰃑 i 󰃑 l}. Then this definitely does not intersect Γ(x1), by
construction. However, the size of each of these is at least n/2, and they are both subsets of the
maximal path {x2 . . . xl}. □

Proposition 3.7 (Path Subgraphs)

Let G be a connected graph of order n 󰃍 3, with δ(G) 󰃍 k/2 for some integer k < n. Then
Pk 󰃑 G: G contains a path of length k.

Proof: Suppose not. Then let P = x0x1 . . . xl be a path of maximal length, for some l < k. The
neighbours of x0 and xl must be inside P , due to maximality. Let

A = Γ(x1) B = {xi+1 : xi ∈ Γ(xl)}

These sets each have size at least δ(G) 󰃍 k/2. Also, x0 is not in either set, so they are both subsets
of {x1 . . . xl}, which is of size at most l < k. Their intersection is thus non-empty.

Now, take xi ∈ A ∩B, and consider the cycle C of length l:

C = x0xixi+1xi+2 . . . xl−1xlxi−1xi−2 . . . x2x1x0

Since l < n, there is at least one vertex c /∈ C, and since G is connected, there is a path from c to
some vertex xj ∈ C. Combining these, we can construct a path with length at least l + 1. This
contradicts maximality, so we are done. □

Theorem 3.8 (Edge Condition on Path Subgraphs)

Let G be a graph on n 󰃍 3 points. Then for k 󰃍 1,

e(G) >
n(k − 1)

2
=⇒ Pk 󰃑 G.
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Proof: Assume k 󰃍 2, noting that the k = 1 case is obvious, and induct on n. Also, if n 󰃑 k, this
is trivially true, as the condition is impossible to satisfy.

Without loss of generality, take G to be connected: if not, we can apply the proof to its connected
components.

By Proposition 3.7, we have a vertex x of degree at most (k− 1)/2. Let G′ = G− x be a graph on
n− 1 vertices, which by induction does not contain a path of length k. Thus

e(G) = e(G′) + d(x) 󰃑 (n− 1)(k − 1)

2
+

k − 1

2
󰃑 n(k − 1)

2

□

3.1 Turán’s Theorem

We often ask how “large” (in some relevant sense) a graph with some given property can be. These
are extremal problems: the last few we have seem have been about both cycles and paths. What
about complete subgraphs?

Definition 3.9 (r-partite Graphs)

We say that a graph G is r-partite if there is a partition V = V1 ∪ · · ·∪Vr of pairwise disjoint
sets of vertices such that for all edges xy ∈ E, x and y are not in the same Vi.

In the case where r = 2, this is exactly a bipartite graph (Definition 1.20).

Definition 3.10 (Turán Graph)

The complete r-partite graph has every edge between vertices in different classes of the par-
tition: any edge being added to it makes it no longer r-partite.

The Turán graph Tr(n) is the complete r-partite graph on n vertices, with the size of the
vertex classes “as equal as possible” (differing by at most 1).

Remark 3.11 (Notes on Turán graphs)

There are some points to note from these definitions.

1. If G is (r− 1)-partite, then G does not contain Kr, otherwise two vertices of Kr would
be in the same class.

2. Tr−1(n) therefore does not contain Kr.

3. If r | n, then all classes have size exactly n/r. This means the degree of every vertex is
n− n/r, or alternatively n(1− 1/r).

4. To obtain Tr(n− 1) from Tr(n), you can remove any point from any largest class.

5. To do the opposite, add a point to any smallest class, and all possible edges.

Theorem 3.12 (Turán’s Theorem)

Let G be a graph on n vertices. Then if e(G) > e(Tr−1(n)), then Kr 󰃑 G.

Note: This is the best possible bound: the Turán graph is maximal. However, generally e(Tr−1(n))
is a fairly complicated function of both n and r.
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Proof: By maximality, it is sufficient to show that

|G| = n, e(G) = e(Tr−1(n)),Kr ∕󰃑 G =⇒ G ∼= Tr−1(n).

Induct on n, assuming n 󰃍 r (the other cases are clear). Notice that δ(G) 󰃑 δ(Tr−1(n)).

We claim that for any vertex x ∈ G with d(x) = δ(G), G′ = G− x = Tr−1(n− 1). Note that that
G′ does not contain Kr, and has e(G) − δ(G) edges, which is at least e(Tr−1(n)) − δ(Tr−1(n)).
This last expression is the same as e(Tr−1(n − 1)), by point 4 above. By induction, G′ is indeed
the Turán graph on one fewer vertex.

Now, let V1 . . . Vr−1 be vertex classes of G′. But Γ(x) must miss some Vi, otherwise G 󰃍 Kr. Then
Γ(x) ∩ Vi ∕= ∅ for some i. But |Γ(x)| = n− 1−min |Vi|. So

Γ(x) =
󰁞

j ∕=i

Vj |Vi| minimal

G is then complete (r − 1)-partite with vertex classes Vj(j ∕= i) and Vi ∪ {x}, so G ∼= Tr−1(n). □

Example 3.13 (The Problem of Zarankiewicz)

How many edges can a bipartite graph with n vertices per class have without containing Kt,t?
We write Z(n, t) for this size. Traditionally, we think of t as being fixed, amd varying n and
looking at asymptotic behaviour.

Theorem 3.14 (The Problem of Zarankiewicz)

Let t 󰃍 2. Then Z(n, t) is subquadratic: indeed Z(n, t) 󰃑 2n2−1/t for sufficiently large n.

Proof: Recall that we need G = (X ∪ Y,E) with |X| = |Y | = n, where G ∕󰃍 Kt,t. Let the degrees
in X be d1 . . . dn. We can freely take di 󰃍 t− 1 (if not, just add them in for extra edges).

For each t-set S ⊆ Y , count how many x ∈ X have S ⊆ Γ(x). Of course, this must be at most
t− 1. Thus the number of

(x, S) ∈ X × {|S| = t : S ∈ ℘ (Y )} s.t. S ⊆ Γ(x) 󰃑 (t− 1)

󰀕
n

t

󰀖

Now, each x belongs to exactly d(x) choose t such pairs. Thus

󰁛

x∈X

d(x) =

n󰁛

i=1

di 󰃑 (t− 1)

󰀕
n

t

󰀖

Now consider that the function

w 󰀁→ w × (w − 1)× · · ·× (w − t+ 1)÷ t!

is convex in w for w 󰃍 t− 1. This means that

󰁛󰀕
di
t

󰀖
󰃍 n

󰀕
d

t

󰀖
where d =

1

n

󰁛
di

=⇒ n(d− t+ 1)t 󰃑 (t− 1)nt =⇒ d 󰃑 (t− 1)1/tn1−1/t + t− 1

=⇒ nd = e(G) 󰃑 t1/t · n2−1/t + tn

which gets us the required result. □
But does Z(n, t) actually grow at that rate? Well, this is an unsolved problem! For sufficiently
large n, Z(n, 2) can be bounded between C1n

3/2 and 2n3/2, while Z(n, 3) can be bounded between
C2n

5/3 and 2n5/3 (for some values of the constants C1 and C2).
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Definition 3.15 (Extremal Function)

Take a fixed graph H. Define the extremal function ex(n,H) to be the largest graph on n
vertices which does not contain a copy of H:

ex(n,H) = max {e(G) : |G| = n,H ∕󰃑 G}

We can rewrite Turán’s theorem (3.12) to say

lim
n→∞

2 · ex(n,Kr)

n(n− 1)
= 1− 1

r − 1

and Theorem 3.8 to say that ex(n, Pk) ∼ n(k − 1)/2. We often refer to the limiting term as being
the density of the graph, since it is the proportion of possible edges which exist.

In general, how does this function ex(n,H) behave? Given H, let r be the least integer such that
H is r-partite. Trivially, this is at most |H|. Now consider Kr(t), the complete r-partite graph
with t vertices per class, known as the “t-blowup of Kr”.

Theorem 3.16 (Erdős-Stone Theorem)

For all integers r 󰃍 2 and t 󰃍 1, and any ε > 0, there is an integer N such that if G is a graph
with |G| = n > N ,

density(G) =
2 · e(G)

n(n− 1)
> 1 +

1

r − 1
+ ε =⇒ G 󰃍 Kr(T )

Proof: Omitted. □
Corollary:

lim
n→∞

2 · ex(n,H)

n(n− 1)
= 1− 1

r − 1
with H r-partite

Proof: Combine the reformulation of Turan’s theorem and the fact that H 󰃑 Kr(t) for some t. □
Note: If H is bipartite specifically, then this is equal to 0: the graph is sparse. But the growth of
ex(n,H) is generally mysterious, even for small n. For example, when H = C2k, we only have any
understanding of the cases up to k = 5.
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4 Graph Colouring

4.1 The Chromatic Number

A graph colouring is a way of assigning each vertex of a graph a colour, such that no two adjacent
vertices share a colour. For example, the graph below can be coloured using red, green, and yellow.

Definition 4.1 (r-colouring and Chromatic Number)

An r-colouring of G = (V,E) is a function c : V → {1 . . . r} with no adjacent edges mapping
to the same colour, ie. xy ∈ E =⇒ c(x) ∕= c(y).

The chromatic number χ(G) is the smallest r such that G has an r-colouring. For example,
the above graph has a chromatic number of 3 (the triangle ensures it cannot be 2-coloured).

Obviously, χ(Pn) = 2(n 󰃍 2), χ(En) = 1, χ(Kn) = n, and

χ(Cn) =

󰀫
2 n even

3 n odd
.

Note: In fact, for all trees, χ(T ) = 2: this is easy to show by induction, removing leaves.

Proposition 4.2 (Bipartite is 2-Colourable)

G is bipartite is and only if χ(G) 󰃑 2.

Proof: (⇒) If V = X ∪ Y , then set c(x) = 1 for x ∈ X and c(y) = 2 for y ∈ Y . There are no
edges between two vertices in X or two vertices in Y , so the colouring rule holds.

(⇐) Take X = {x ∈ G : c(x) = 1} and Y = {y ∈ G : c(y) = 2}. □
Note: In fact, in general G is r-partite if and only if χ(G) 󰃑 r. This is the interpretation of the
chromatic number: χ(G) is the least r such that G is r-partite.

Corollary: All trees are bipartite.

Corollary: We can restate the Erdős-Stone Theorem (3.16) in terms of the chromatic number:

lim
n→∞

2 · ex(n,H)

n(n− 1)
= 1− 1

χ(H)− 1

What can we say about this chromatic number? For example, we can say that χ(G) 󰃑 |G|: if we
give each vertex a unique colour, then obviously the colouring is valid.

Proposition 4.3 (Maximum Chromatic Number)

For any graph G, χ(G) 󰃑 ∆(G) + 1, where ∆(G) = max {d(x) : x ∈ G}.

Before we prove this proposition, we should define an algorithm for colouring.
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Definition 4.4 (Greedy Colouring Algorithm)

Given G = (V,E) where V = {v1 . . . vn}, the greedy colouring algorithm of G on an ordering
v1 . . . vn is the process of:

1. Give v1 colour 1.

2. Give v2 colour 1 if v1v2 /∈ E, otherwise colour 2.

3. Proceed down the list, giving each vertex the first available colour.

This is obviously not an optimal colouring, but it always works.

Proof: Order the vertices arbitrarily. Obviously, any vertex will have at most ∆(G) neighbours,
so you will never have to exclude more than ∆(G) colours. This means the maximum colour you
assign will be ∆(G) + 1, as required. □
Note: This bound is sometimes tight (eg. Kn) and sometimes extremely loose (eg. K1,n−1).

Note: Kr 󰃑 G obviously implies χ(G) 󰃍 r, but the converse is not true. For example, K3 ∕󰃑 C5,
but C5 is not 2-colourable.

Note: Unfortunately, there is no simple formula for χ(G).

4.2 Colouring Planar Graphs

How many colours do we need to colour planar graphs in particular? This is one of the most famous
problems in graph theory, with a conjecture posed in 1976 by Kenneth Appel and Wolfgang Haken.
It was the first famous proof to use computers to check through cases en masse.

Theorem 4.5 (The Four-Colour Theorem)

Let G be a planar graph. Then χ(G) 󰃑 4.

This is usually phrased in terms of maps: on any sort of world map, each country can be assigned
one of four colours in such a way that no neighbouring countries share a colour. This is in fact the
dual statement of the theorem.

Definition 4.6 (Dual Graph)

Recalling the concept of a line graph from Definition 2.12, we define the dual graph of G to
have vertices equivalent to the faces of G, with two vertices adjacent if their faces share a line.

We will not exhibit a proof of the four-colour theorem, as it is quite involved and requires a lot of
case analysis. However, we will prove two weaker versions: the six-colour and five-colour theorems.

Theorem 4.7 (The Six-Colour Theorem)

Let G be a planar graph. Then χ(G) 󰃑 6.

Proof: Take a minimal counterexample G. Since the |G| 󰃑 6 case is clear, assume without loss of
generality that |G| = n 󰃍 7. We see that δ(G) 󰃑 5: if not, then e(G) 󰃍 3n, so would not meet the
condition e(G) 󰃑 3n− 6 for planar graphs.

Choose some x ∈ G with d(x) 󰃑 5, and construct G′ = G− x, which is planar. By minimality, we
can colour G′ with at most six colours. Also, the neighbourhood of x has size at most 5, so there
are at most five colours which x cannot be. Therefore we can colour x with an unused colour, so
G cannot be a counterexample. □
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Definition 4.8 (i-j Component)

Given a graph G and an r-colouring of G, let x ∈ G be a vertex. The i-j component of x is
the set of vertices which are reachable from x using a path made up only of vertices of colours
i and j. Note that these must alternate.

1

2

3

In the above graph, the highlighted path shows a 1-3 component.

Note: There is a reason we define this with two colours, rather than just one! Obviously, the
component of any x using a path made of vertices of just one colour is x alone, since it cannot be
adjacent to another vertex of the same colour.

Proposition 4.9 (The Swapping Lemma)

Given two colours i and j, we can swap the colours within an i-j component of G to obtain
a new colouring.

Proof: Obvious. □

Theorem 4.10 (The Five-Colour Theorem)

Let G be a planar graph. Then χ(G) 󰃑 5.

Proof: We use induction on |G|, with the |G| 󰃑 5 case clear.

Given a planar G with at least six vertices, there is some x with d(x) 󰃑 5. Construct G′ = G− x.
By induction, we can colour G′ with five colours.

Suppose d(x) 󰃑 4. Then we can colour G by colouring G′ and then colouring x with some colour
which does not appear in its neighbours. Similarly, if d(x) = 5 but there is some colour appearing
twice in the neighbours of x, then there is another colour available for x.

The remaining case to check is when d(x) = 5 and all five colours appear once in Γ(x). Arrange
the vertices of Γ(x) = {x1, x2, x3, x4, x5} clockwise with xi being of colour i.

Suppose there is no 1-3 path from x3 to x1. Let H be the 1-3 component of x3. Then x1 /∈ H,
since there is no path. By the previous proposition, we can swap the colours 1 and 3 within H.
This is a valid colouring which frees up colour 3, allowing us to use it for x.

Then we can freely assume that there is in fact a 1-3 path. We can now do the same thing with
the existence of a 2-4 path. But this would cross the 1-3 path, so the graph cannot be planar.

This means by induction, G can be coloured with at most five vertices. □
Note: The paths of alternating colour used in this proof are called Kempe chains, after Alfred
Kempe, who used them in an attempted proof of the four-colour theorem (4.5).

Earlier, we saw in Proposition 4.3 that any graph satisfied χ(G) 󰃑 ∆(G) + 1. In fact, this bound
is strict, for example in the case of Kn and Cn for n odd. A more interesting result was showed
by Rowland Leonard Brooks in 1941: these are the only times the bound is strict!
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Theorem 4.11 (Brooks’s Theorem)

If G is a connected graph which is not the complete graph or a cycle of odd length, then
χ(G) 󰃑 ∆(G), otherwise χ(G) = ∆(G) + 1.

Proof: If G is not regular, then choose some vertex xn with d(xn) < ∆(G). Then choose xn−1

with xn ∈ Γ(xn−1), and choose xn−2 with Γ(xn−2) meeting {xn, xn−1}. Keep going to obtain a
sequence xn . . . x1 such that every xi has a forward edge (given xi ∕= xn, there is some j > i with
xixj an edge). Run the greedy algorithm like this: for each xi, we have ∆(G)− 1 edges coloured.

Now we may assume without loss of generality that G is ∆-regular. In particular, if ∆ = 2, then
G is simply a cycle, for which we know the theorem to be true. Thus take ∆ 󰃍 3.

Consider a minimal counterexample G.

If G has a cutvertex v, then we can take the components Ci of G− v. By minimality, each of the
subgraphs Ci + v are ∆-colourable. Choose a colouring of each of these subgraphs which assigns v
the first colour (by relabelling). Stitching the colourings together yields a ∆-colouring of G. Thus
we may take G to have no cutvertex without loss of generality.

Suppose that G is 3-connected, and so no set of 3 vertices separates G. We seek an ordering of
vertices x1 . . . xn such that there are forward edges for each i and that xn has two edges of the
same colour: this would finish the proof using greedy colouring.

Pick an element xn ∈ G, and consider its neighbourhood Γ(xn). This cannot be the complete
graph, as adding xn would form K∆+1 (a clear contradiction: G is not complete but is connected,
so any extra edge out of this set would breach the condition).

Now choose x1 and x2 not adjacent in Γ(xn). Then G− {x1, x2} is connected, so we may order it
as x3 . . . xn with each xi having a forward edge. Run the greedy algorithm on x1 . . . xn to obtain
a colouring.

So we must consider the case of G not being 3-connected. Choose a separator {x, y} of size 2. List
the components G1 . . . Gk, which can each be ∆-coloured (as they are not regular).

If xy ∈ E, then each colouring gives them distinct colours. We can recolour them and combine
them to obtain a ∆-colouring of G. If not, then if each Gi has dGi(x) 󰃑 ∆− 2 or dGi(y) 󰃑 ∆− 2,
then we can assume the ∆-colouring of Gi gives x and y distinct colours, so we are also done.

Thus we are reduced to the case where there is some Gi (say G1) where dG1(x) = dG1(y) = ∆− 1.
So k = 2 and dG2(x) = dG2(y) = 1, as the sum must be ∆.

separator
∆ = 6

internal edges in G1 and G2 omitted

Suppose that ΓG2(x) = {u} and ΓG2(y) = {v}. Then consider the new separator {x, v}. Then
xv /∈ E, by the degree consideration (dG2(x) = 1).

Remove x and v. Then G splits into G′
1 ∪ {y} and G′

2 ∪ {v}: since G is 2-connected, there is
no more splitting. In the new G′

i, d(x) and d(y) = ∆ − 1 and 1 in some order. So for this new
separator, we are reduced to the previous case, and so we are done! □
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4.3 Chromatic Polynomials

Definition 4.12 (Chromatic Polynomial)

For t ∈ N and a graph G, we write PG(t) for the number of t-colourings of G. By definition,
χ(G) is the least t such that PG(t) 󰃍 1.

Why is this necessarily a polynomial?

Definition 4.13 (Contraction)

Given G = (V,E) with xy ∈ E, the contraction of G by xy, written G/xy, is formed by
replacing vertices x and y with a new vertex joined to all points that were originally joined
to x or y.

Proposition 4.14 (Deletion-Contraction)

Let G be a graph with an edge xy. Then PG = PG−xy − PG/xy.

Proof: Consider the two types of t-colourings of G − xy. In type 1, x and y are given different
colours. These correspond directly to t-colourings of G. In type 2, x and y are given the same
colour, corresponding to t-colourings of G/xy. Hence PG−xy = PG + PG/xy as required. □
Unfortunately, we cannot use the recurrence relation and the empty graph to define the chromatic
polynomial: it isn’t clear that this gives a unique function.

Interestingly, PG(t) has a factorisation:

PG(t) =
󰁜

C a component of G

PC(t).

Proposition 4.15 (PG(t) is a Polynomial)

The chromatic polynomial is in fact a polynomial.

Proof: Induct on e(G). The base case of the empty graph is clear.

Given G with e(G) > 0, pick xy ∈ E. By induction, PG−xy and PG/xy are both polynomials. So
their difference, which by the deletion-contraction relation (4.14) is PG(t) is a polynomial too. □
If T is a tree on n vertices, then PT (t) = tn − (n − 1)tn−1. This is because the root vertex can
have any colour, and each child node can be recursively given any colour except its parent’s.

Proposition 4.16 (Leading Terms of PG)

If G is a graph on n vertices and m edges, then the leading terms of PG(t) are t
n−mtn−1+. . . .

Proof: Induct on e(G), noting that the base case PEn(t) = tn, for e(G) = 0 is clear.

Given G with e(G) > 0, choose xy ∈ E. By induction, PG−xy = tn − (m − 1)tn−1 + . . . , and
PG/xy = tn−1 − . . . . Putting these together, we get the desired result. □
Note: In fact, the coefficients of PG(t) alternate in sign, and the constant term is 0 for any graph
with at least one edge. The term of degree n is always 1, corresponding to assigning distinct colors
to all vertices.

Since PG is a polynomial, we can consider applying it for real or complex t rather than just integers.
The 4-colour theorem says that planar G has PG(4) ∕= 0, but no direct proof of this has been found.
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4.4 Edge Colouring

We now turn to edge colouring, which is the dual form of vertex colouring.

Definition 4.17 (Edge Colouring)

Let G = (V,E) be a graph. A k-edge colouring is a map c : E → {1 . . . k} such that
c(xy) ∕= c(xz) for all triples of distinct vertices x, y, z.

The edge-chromatic number, or chromatic index of G is χ′(G), the smallest k such that there
exists a k-edge colouring of G.

A k-edge colouring is then a k-colouring of the line graph L(G): χ′(G) = χ(L(G)).

Note: The two values χ(G) and χ′(G) can be distant: for the bipartite graph G = K1,n, χ(G) = 2
but χ′(G) = n. Trivially, χ′(G) 󰃍 ∆(G) (for G = C2n+1, χ(G) = 3 > 2 = ∆(G).)

Theorem 4.18 (Vizing’s Theorem)

For any graph G, χ′(G) = ∆(G) or ∆(G) + 1.

Proof: We need to show that χ′(G) 󰃑 ∆(G) + 1. Take G with e(G) > 0, and pick e ∈ E. By
induction, there is a (∆+ 1)-edge colouring of G− e.

Write e = xy1. At each vertex, there is some colour not being used, as the number of colours is
larger than the maximum degree: say the colour c at x and c1 at y1. Without loss of generality,
suppose c ∕= c1: otherwise, we can assign the overall unused colour to e = xy1.

Choose a maximal sequence of distinct vertices y1 . . . yk, all of which are neighbours of x, such that
some colour ci is missing at yi and that xyi has colour ci−1. This exists as the graph is finite, and
must terminate at yk since either ck does not occur at x or ck is one of the previous cj .

In the first case, when ck does not occur at x, give the colour xyi colour ci for each 1 󰃑 i 󰃑 k.

In the second case, where ck = cj for some j < k, then we can renumber to take j = 1. This leaves
xyj uncoloured. Let c be a colour not used at x. If there is no c-c1 path from y1 to x, then swap
colours c and c1 on the c-c1 component of y1.

Now c is missing at y1, by the swap, and c is still missing at x, so we are done with this case.

Suppose instead that there is no c-c1 path from yk to x. Then we can swap c and c1 on the c-c1
component of yk. Now we can give xyk colour c, and every other xyi colour i.

So there is a c-c1 path from y1 to x and yk to x. Let H be the component of x containing y1 and
yk. Then ∆(H) 󰃑 2, as H is 2-edge coloured. H is connected, so it comprises paths or cycles only.

But dH(x), dH(y1), dH(yk) 󰃑 1: a contradiction, as not all three can be at the end of a path. □

4.5 Graphs on Surfaces

The graph K5 can be drawn in a planar fashion on the torus.

In fact, so can K7. This is because the torus has a lot more flexibility for edges not crossing over
each other compared to the traditional plane.



28 · Graph Theory Avish Kumar

We use this subsection to formalise this intuition.

Definition 4.19 (Surface)

A compact orientable surface of genus g ∈ N0 comprises a sphere with g “handles” attached.

For some small genus numbers, the surfaces described look like the below.

g = 0
sphere

g = 1
torus

g = 2
double torus

Recall that for planar G, we have v − e+ f 󰃍 2 (with equality if and only if G is connected).

Example 4.20 (Drawing K3 on the Torus)

There are multiple genuinely distinct ways to draw a copy of K3 onto a surface of genus 1.

normal version
v − e+ f = 2

ring version
v − e+ f = 1

cutoff version
v − e+ f = 1

In the first diagram, the nature of the surface is ignored, and it is treated as a plane, thus
satisfying the traditional Euler formula.

In the other two versions, we use the hole, which means the number of faces is smaller (just
1). In the last diagram, the edge which is not visible goes around the back.

So the traditional result is not always satisfied. In fact, we have a new result.

Theorem 4.21 (Euler-Poincaré Formula)

For any planar graph on a surface of genus g, we have

v − e+ f 󰃍 (2− 2g)/E

This E is called the Euler characteristic of the surface.

Proof: Omitted. □
Note: For e 󰃍 3, we have 3f 󰃑 2e, counting edges via faces and vertices. Then n−m+2m/3 󰃍 E,
which gives us E 󰃑 v − e/3 or e 󰃑 3(v − E).

A natural next question is to look back at the idea of the chromatic number, and see if we can
extend it to surfaces beyond the plane.
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Theorem 4.22 (Heawood’s Theorem)

Let G be a planar graph drawn on a surface of Euler characteristic E 󰃑 0. Then

χ(G) 󰃑 H(E) =

󰀙
7 +

√
49− 24E

2

󰀚

We see that H(0) = 7, so equality is attainable if and only if K7 can be drawn on the surface.
Also, H(2) = 4, which almost gives us the four-colour theorem!

Proof: Choose a minimal G with χ(G) = k and let it be drawn on a surface. We claim that
k 󰃑 H(E). By minimality, δ(G) 󰃍 k − 1 and n = k.

Then k2 − k 󰃑 6k − 6E. Solving this quadratic yields the above bound. □
Note: Heawood also showed that this was the best possible bound, but we will not prove this.

Note: We do not consider non-orientable surfaces, such as the Klein bottle.
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5 Ramsey Theory

Ramsey theory is a branch of graph theory named after Frank Ramsey, heuristically based on
finding order within disordered graphs. Our motivating questions will generally be of the form
“can we find (some amount of) order within (enough) disorder?”

Originally, by an r-colouring as defined in 4.1, we meant a function from the vertices of a graph
to the set {1 . . . r}. In this section, we instead think of colourings as being functions from the set
of edges E → {1 . . . r}.

Example 5.1 (Edge Colouring)

Given c a function from E(K6) → {1, 2}, can we find a monochromatic K3: that is, a triangle
where all edges are either red or blue?

Here, for example, we can find multiple blue triangles. Can we do this for every colouring of
K6? In fact, the answer is yes. The degree of every vertex is 5, so there are at least three
edges of the same colour.

Then we can suppose that x1, x2, x3 are all adjacent to x along a red edge. Then none of
these three can be connected to each other with a red edge without connecting a triangle.

But then all three are connected via blue edges, which also forms a triangle. So for any such
edge colouring, some monochromatic triangle exists.

What about monochromatic K4? In general, is there an n such that Kn being 2-coloured leads to
the existence of a monochromatic K4? What about in general?

This question motivates our definition of the Ramsey numbers.

Definition 5.2 (Ramsey Numbers)

For s ∈ N, let the s’th Ramsey number R(s) be the smallest n (if one exists) such that if the
edges of Kn are coloured red or blue, there is always a monochromatic Ks.

Then R(3) = 6 (as we can find a colouring of K5 with no monochromatic triangles).

We now try to show that R(s) exists for all s, and find roughly how fast it grows. Let’s try to go
from a monochromatic K3 to a monochromatic K4. First, we try to find a red K3 or blue K4.
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Definition 5.3 (Augmented Ramsey Numbers)

For s, t ∈ N, let the s-t Ramsey number R(s, t) be the smallest n (if one exists) such that if
the edges of Kn are coloured red or blue, there is always a red Ks or a blue Kt.

Note: R(s) = R(s, s), R(s, t) = R(t, s), and R(s, 2) = s. For s 󰃑 t, R(s) 󰃑 R(s, t) 󰃑 R(t).

Theorem 5.4 (Ramsey’s Theorem)

For all s, t 󰃍 2, R(s, t) exists, and for s, t 󰃍 3 it is bounded by

R(s, t) 󰃑 R(s− 1, t) +R(s, t− 1).

Proof: In fact, it suffices to show the bound: if the bound holds, then R(s, t) exists and is finite
for all s and t.

Set a = R(s− 1, t) and b = R(s, t− 1). Choose a 2-colouring of Ka+b, and let x be a vertex of this
graph. Note that d(x) = a+ b− 1, so there are 󰃍 a red edges or 󰃍 b blue edges incident on x.

Let Nr be the neighbours of x along a red edge, so that |Nr| 󰃍 a. The colouring induced on Nr

contains either a Ks−1 in red, or a Kt on blue.

In the second case, we are done. But in the first case, we can simply add x to Nr to create a Ks,
and show the result again. □
Corollary: Let s, t 󰃍 2. Then

R(s, t) 󰃑
󰀕
s+ t− 2

s− 1

󰀖
.

Proof: Induct on s+ t. If s = 2 or t = 2, then we are satisfied.

Given s, t 󰃍 3, assume that all the previous results hold and satisfy the inequality. Then so does
their sum, by expanding. □
Corollary: Taking R(t) = R(t, t), we have the upper bound R(t) 󰃑 22t = 4t.

Very few non-trivial Ramsey numbers R(s, t) are known exactly for s, t 󰃍 3.

R(2) R(3) R(3, 4) R(3, 5) R(3, 6) R(3, 7) R(3, 8) R(3, 9) R(4) R(4, 5)

2 6 9 14 18 23 28 36 18 25

R(5) = R(5, 5) is unknown, and the best bounds we have are 43 󰃑 R(5) 󰃑 46. Unfortunately, if
one were to check the K46 case, we have 1035 edges and thus 21035 colourings. This is over 10300,
so there is no hope of checking this even on a computer!

Definition 5.5 (Multicoloured Ramsey Numbers)

More generally, for s1 . . . sk ∈ N, let the Ramsey number Rk(s1, . . . , sk) be the smallest n (if
one exists) such that if the edges of Kn are coloured with k colours, there is always a Ksi of
colour i, for some 1 󰃑 i 󰃑 k.

Proposition 5.6 (Multicoloured Ramsey Numbers Exist)

For all s1 . . . sk 󰃍 2, Rk(s1, . . . , sk) exists.
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Proof: Now we induct on the number of colours k, with the base case of k = 2 given by Ramsey’s
theorem (5.4). Suppose k > 2, and s1 . . . sk are given.

Then let n = R(s1, Rk−1(s2, . . . , sk)). Any k-colouring of Kn may be viewed as a 2-colouring with
colours 1 and “not 1”. By our choice of n, either a Ks1 is coloured with colour 1, or a Kn is
coloured with the other colours, so one of those conditions are satisfied by induction. □
Note: This proof is sometimes called the “colourblind” or “turquoise goggles” method.

Now, we move on to r-sets. Previously, we have been colouring pairs of vertices. What about
colouring r-sets? When r = 3, this amounts to asking whether we can colour each triangle red or
blue, and if that forces a 4-set with all four triangles being the same colour.

Definition 5.7 (r-set)

On a set X, the r-sets of X are {A ⊆ X : |A| = r} for r ∈ N.

We continue in our tradition, writing R(r)(s, t) for the smallest n, if one exists, such that whenever
X(r) is 2-coloured, there is a red s-set (that is, an s-set for which all r-sets contained within it are
red) or a blue t-set.

Example 5.8 (r-set Ramsey)

We can compute some of these directly.

1. R(2)(s, t) = R(s, t).

2. R(1)(s, t) = s+ t− 1 by the pigeonhole principle.

3. R(r)(s, t) = R(r)(t, s) by the symmetry of the definition.

4. R(r)(s, r) = s.

And of course, we must show these exist.

Theorem 5.9 (Ramsey for r-sets)

For r 󰃍 1 and s, t 󰃍 r, R(r)(s, t) exists.

Proof: We define

a = R(r)(s− 1, t)

b = R(r)(s, t− 1)

n = R(r−1)(a, b) + 1

and claim that if all of these exist, then R(r)(s, t) 󰃑 n.

Given a 2-colouring of the set X(r) = {1 . . . n}(r), pick some x ∈ X and let Y = X \ {x}. Then c
induces the 2-colouring c′ of Y (r−1) by c′(A) = c(A ∪ {x}).

By definition of n− 1 = R(r−1)(a, b), there is either a red a-set or a blue b-set in Y under c′.

If there is a red a-set Z ⊆ Y , then (by definition of a) we have a red (s − 1)-set or a blue t-set
under c. Add x to the (s− 1)-set if needed. A symmetric argument holds in the blue case. □

Corollary: For r 󰃍 1 and s1 . . . sk 󰃍 r, R
(r)
k (s1, . . . , sk) exists.

Proof: Use the same argument along with the colourblindness method. □



33 · Graph Theory Avish Kumar

5.1 Infinite Ramsey Theory

We can define infinite graphs in much the same way we defined finite ones. For example, take the
countably infinite complete graph G = (N,N(2)), where the edges are the pairs i, j where i < j.

Suppose we have a 2-colouring of this graph. We can ask the same question: can we always find
an infinite monochromatic subset? That is, is there some infinite subset M ⊆ N such that the
colouring c is constant on M (2)?

Example 5.10 (Infinite Colouring)

Define the colouring c on N(2) by

c(i, j) =

󰀫
red i+ j is even

blue i+ j is odd

Then the set of even numbers 2N = {2, 4, 6, . . .} is an infinite red subset.

However, let’s take another example. Define the colouring c on N(2) by

c(i, j) =

󰀫
red i+ j has an even number of distinct prime factors

blue otherwise

We can prove such a set must exist, but an explicit version is unknown.

Theorem 5.11 (Infinite Ramsey’s Theorem)

For any k-colouring on N(2), there exists an infinite monochromatic subset M ⊆ N .

Proof: Choose x1 ∈ N arbitrarily. By the pigeonhole principle, there is some infinite subset
A1 ⊆ N \ {x1}. with all edges of the form x1a1 of the same colour c1.

Now choose x2 in A2. Again by the pigeonhole principle there is some infinite A2 ⊆ A1 such that
all x2a2 edges are the same colour c2.

Continue this process forever, to obtain something like:

. . .

A1

A2
A3

An

We thus obtain a sequence x1, x2 . . . in which xixj has colour ci for all i < j. As there are finitely
many colours, by the pigeonhole principle some colour appears infinitely many times: say c∞.

We can thus take the infinite subsequence {xi : ci = c∞}. For every element in this sequence, the
edge to any subsequent element in the sequence is necessarily by construction of colour c∞. Thus
the graph has an infinite monochromatic sequence. □
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Corollary: Any bounded sequence of real numbers (xi) has a convergent subsequence.

Proof: Define the 2-colouring c : N(2) → {↑, ↓}, where

c(i, j) =

󰀫
↑ xi < xj

↓ xi 󰃍 xj

Then by infinite Ramsey’s Theorem (5.11), there must be an infinite monochromatic subset. But a
monochromatic subset here is specifically a monotonic subsequence. Since the sequence is bounded,
it must converge. □
Note: This is, of course, the Bolzano-Weierstrass theorem, now proved with graph theory!

Theorem 5.12 (Infinite Ramsey for r-sets)

Given r = 1, 2, . . . if N(r) is 2-coloured, there is an infinite monochromatic subset M ⊆ N.

Proof: We induct on r, with the r = 1 case being trivial by the pigeonhole principle.

For r > 1, we are given an r-colouring c of N(r). Fix x1 ∈ N. We induce a 2-colouring c1 of
(N \ {x1})(r−1) by c1(A) = c(A ∪ {x1}). By induction, there is some infinite A1 ⊆ N \ {x1} which
is monochromatic for c1.

Now choose x2 ∈ A1 and continue as above to produce distinct x1, x2, . . . and colours c1, c2, . . . ,
and by similar arguments to those above, we are done. □
Corollary: We saw that, given points (1, x1), (2, x2), · · · ∈ R2, we can find an infinite subset whose
induced plot (a piecewise linear graph passing through these points) is increasing or decreasing.
Alternatively, we can also insist that the induced graph is convex or concave.

Proof: Consider N(3). For triples i < j < k, set the colour

c({i, j, k}) =
󰀫
red if (j, xi) lies below the line through (i, xi) and (k, xk)

blue otherwise

Then apply infinite Ramsey’s Theorem for r-sets (5.12). □
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6 The Probabilistic Method

Motivated by our study of Ramsey theory, we want to know how fast R(S) grows. We already
know that R(s) 󰃑 4s for s ∈ N by the second corollary to Ramsey’s theorem (5.4). However, the
lower bound is more complicated.

Note: Trivially, R(s) > (s − 1)2: take s − 1 copies of Ks−1, then colour edges within each copy
red and edges between different copies blue.

In the early 1940s, it was conjectured that R(s) ∼ cs2. However, Paul Erdős showed that this was
false in 1947, with a surprisingly easy-to-prove theorem.

Theorem 6.1 (Erdős Bound on Ramsey Numbers)

In fact, R(s) 󰃍 2s/2 = (
√
2)s.

Proof: Choose a colouring of Kn at random, by taking each edge to be red or blue at random
with independent probability 1/2. Consider

P(a fixed s-set is monochromatic) = 2 · (1/2)(
s
2) = (1/2)(s

2−s−2)/2

where the exponent is the number of edges, and the factor of 2 is to account for the set being either
red or blue. Thus the probability of there being some such set is

P(some s-set is monochromatic) 󰃑 2

󰀕
n

s

󰀖
(1/2)(

s
2) =

󰀕
n

s

󰀖
· 21−(

s
2)

Then if this is less than 1, we must have R(s) > n. But

󰀕
n

s

󰀖
󰃑 ns

s!
󰃑 ns

21+(s/2)
=⇒ n < 2s/2 =⇒ ns < 2s

2/2 =⇒ R(s) > n.

which completes the proof. □
Note that this proof was probability applied to random graphs, which we call the probabilistic
method. These proofs tend to be non-constructive: we still do not know how to construct a bad
colouring. We have simply used the fact that P(A) < 1 =⇒ “sometimes A doesn’t happen”.

In fact, no construction is known giving that R(s) is exponential in s.

In the previous proof, we could derandomise the proof to show that the average number of
monochromatic Ks over all colourings of Kn is less than 1, which essentially shows the exact
same result. But this conversion from a random process to a combinatorial one is not always
possible! Soon, we will pick edges with p ∕= 1/2, which complicates the picture.

We have (
√
2)s 󰃑 R(s) 󰃑 4s. The precise growth speed is unknown, but no lower bound of the

form (
√
2 + ε)2 is known. Last year, an upper bound of the form (4 − ε)s was found for small

ε in 2023 in the first improvement since Erdős! See “An exponential improvement for diagonal
Ramsey” (by M. Campos, S. Griffiths, R. Morris, and the previous lecturer Julian Sahasrabudhe).

Definition 6.2 (Probability Space)

For 0 < p < 1, the probability space G(n, p) is defined as follows: we form a graph on n vertices
where each possible edge is present with probability p, independently of any other edge. For
example, in the proof of the Erdős-Ramsey bound (6.1), we used the space G(n, 1/2).

In general, in G(n, p), the probability of any given graph G is pe(G) · (1− p)(n(n−1)/2)−e(G).
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6.1 Applications

Recall our example of the problem of Zarankiewicz (3.14): we had Z(n, t) 󰃑 2n2−1/t. What is the
corresponding interesting lower bound?

Our first idea is to form a random bipartite graph with n vertices in each class, and choosing edges
with probability p.

We want to choose p such that the expected number of copies of Kt,t is less than 1. Let R be the
random variable for the number of Kt,t: if we find a p such that this holds on an even bipartite
graph of 2n vertices, then we know that Z(n, t) must be bigger.

Theorem 6.3 (Zarankiewicz Lower Bound)

Let t 󰃍 2. Then

Z(n, t) 󰃍 1

2
n2−2/(t+1)

Proof: The idea of this proof is to take a graph G with m edges and r copies of Kt,t, and remove
an edge from each of these copies to obtain a graph with at least m − r edges and no Kt,t, thus
showing that Z(n, r) 󰃍 m− r.

Let G be a random bipartite graph, with vertex classes X,Y (where |X| = |Y | = n). Choose its
edges independently with probability p. Consider the random variables

M = e(G) the number of edges

R = the number of copies of Kt,t in G

Clearly, E[M ] = pn2 while

E[R] =

󰀕
n

t

󰀖2

pt
2 󰃑 1

2
n2tpt

2

By linearity of expectation and setting p = n2/(t−1), we obtain

E[M −R] 󰃍 pn2 − 1

2
n2tpt

2 󰃍 n2−2/(t−1) − 1

2
n2t−2t2/(t−1) =

1

2
n2−2/(t−1)

Therefore there exists a graph with G with m edges and r copies of Kt,t, wih m − r equal to the
above. Therefore we can get the bound we desired. □
Note: This proof is an example of the modification method.

Now, we turn again to chromatic numbers. What makes χ(G) large? To ensure that χ(G) 󰃍 k,
we could of course simply force G to contain a copy of Kk.

Of course, this is not a necessary condition (for example, χ(C5) = 3 even though K3 ∕󰃑 C5), but it
is sufficient: the set of k vertices would all need different colours, as they are all pairwise adjacent.

Definition 6.4 (Clique Number)

The clique number CL(G) of a graph G is defined as the largest integer n such that G contains
a copy of Kn. This is not the same as the chromatic number.

In fact, χ(G) is always at least |G| /α(G), where α(G) is called the independence number of
G and is equal to the size of the largest independent set of vertices.

Note: We can always construct a graph G to be triangle-free (implying that CL(G) = 2) but still
have χ(G) arbitrarily large.
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Definition 6.5 (Girth)

The girth of a graph G is the size of the shortest cycle in G. If G has no cycles, then we say
the girth of G is infinite. For example, the Petersen graph has girth 5.

Surprisingly, we see that we can have large girth and still have χ(G) large!

Theorem 6.6 (Girth Doesn’t Bound Chromatic Number)

For all pairs of integers k, g ∈ N, there is some graph G with girth(G) 󰃍 g and χ(G) 󰃍 k.

Proof: We attempt to find G on n vertices such that the number of short cycles (with length less
than g) is at most n/2, and every independent set has size at most n/2k.

Then, we can remove a vertex in each short cycle, to obtain a graph H on at least n/2 vertices
with girth at least g and chromatic number at least (n/2)÷ (n/2k) = k.

For large n, we choose a random graph in G(n, p), where p = n(1/g)−1. Define the sequence of
random variables Xi as being the number of i-cycles in G, for (3 󰃑 i 󰃑 g − 1). Then let

X = number of cyles of length less than g =

g−1󰁛

i=3

Xi

Note that each Xi can be taken as the sum of indicator random variables, so

Xi =
󰁛

x1...xk∈V

1{x1...xn is a cycle in G} =⇒ E[Xi] =
󰁛

x1...xk∈V

P[x1 . . . xn is a cycle in G]

We can find the expectation using

E[Xi] =

󰀕
n

i

󰀖
i!

2i
p2 󰃑 (np)i = ni/g 󰃑 n(g−1)/g.

which gives us, for sufficiently large n,

E[X] =

g−1󰁛

i=3

Xi 󰃑 gn(g−i)/g <
n

4

Now we use Markov’s inequality t× P[X > t] < E[X]. Take t = n/2k, where 2k | n.

Then, write Yt as the number of t-sets that are independent.

E[Yt] =

󰀕
n

t

󰀖
(1− p)(

t
2) 󰃑 nte−p(t2) 󰃑 nte−pn2/9t2 .

Exponentials dominate polynomials in the long run, so this expression tends to 0 as n → ∞.

Therefore for sufficiently large n, the expected number of independent t-sets is less than 1, and so
there is some graph with no independent t-sets. This completes the proof. □
Note: This is a surprising set of results! A graph having very high girth means in some sense that
it is sparse. Erdős’s proof of the previous theorem shows that in fact for sufficiently large n, the
girth does not bound the chromatic number.

Now, we move to considering the actual graphs from G(n, p), rather than simply using this space
to prove results about the existence of certain graphs.
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6.2 The Structure of a Random Graph

What does a typical graph from G(n, p) actually look like? How does its structure change as p
varies from 0 to 1, in the limit for large n?

One interesting such question is to ask about the probability of a given random graph being
connected, in terms of p.

In order to think about this question, we think about isolated vertices, which are vertices which
have no neighbours. How does the probability P(no isolated vertices) behave? We might initially
assume that it increases vaguely linearly in p, as in the left graph below.

In fact, it increases as in the phase transition graph on the right!

This demonstrates a threshold effect, where the probablity increases very rapidly from 0 to 1 around
some threshold value of p. Why does this happen, and how can we find the threshold value?

Remark 6.7 (Probability Recap)

Recall that for a discrete random variable X taking values in N0, to show P[X = 0] is large,
it is sufficient to show that µ = E[X] is small. Indeed, for all t > 0, we have µ 󰃍 tP[X 󰃍 t],
so P[X 󰃍 t] 󰃑 µ/t (Markov’s inequality), so P[X = 0] 󰃍 1− µ.

The converse is unfortunately false: for any P[X = 0] < 1, µ can be arbitrarily large. Indeed,
to show that P[X = 0] is small, we need to show that σ2/µ2 is small, since

σ2 = E[(X − µ)2] = E[X2]− E[X]2 =⇒ P((X − µ)2 󰃍 t) 󰃑 σ2/t2 for all t > 0.

This gives us P[X = 0] 󰃑 σ2/µ2 as desired. If X counts the number of events A that occur,
meaning µ =

󰁓
A P(A), then the variance is

σ2 = E[X2]− E[X]2 =
󰁛

A,B

P[A]P[B]−
󰁛

A,B

P[A ∩B] =
󰁛

A,B

P[A] · (P[B | A]− P[B]).

This lets us write down the behaviour of the threshold function.

Theorem 6.8 (Phase Transition)

Given constant λ, let G ∈ G(n, p), where p = λ ln(n)/n. Then if λ < 1, G almost surely has
an isolated vertex, and if λ > 1 then G almost surely does not have an isolated vertex.

Proof: Let X be the random variable counting the number of isolated vertices, with Iv being the
indicator variable for a vertex v being isolated. Then

µ = E[X] =
󰁛

v∈V

Iv = n(1− p)n−1 =
n

1− p
(1− p)n.
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For λ > 1, we have:

µ 󰃑 n

1− p
e−pn =

n

1− p
e−λ lnn =

n1−λ

1− p
→ 0 as n → ∞.

This means that P[X = 0] → 1 as n → ∞, which means X = 0 almost surely.

Conversely, for λ < 1, for any ε > 0 and sufficiently small p we have:

1− p 󰃍 e−(1+ε)p =⇒ µ 󰃍 n

1− p
e−(1+ε)pn =

n

1− p
e−(1+ε)λ lnn =

n1−(1+ε)λ

1− p
.

If we choose ε < λ−1 − 1 , then µ → ∞ as n → ∞. Also,

σ2 =
󰁛

u,v∈V

P[Iu = 1] (P[Iv = 1 | Iu = 1]P[Iv = 1])

This is equal to a series of n terms with u = v, and n(n− 1) terms with u ∕= v, so we have

σ2 = n(1− p)n−1
󰀃
1− (1− p)n−1

󰀄
+ n(n− 1)(1− p)n−1

󰀃
(1− p)n−2 − (1− p)n−1

󰀄

󰃑 µ+ n(n− 1)(1− p)n−1p(1− p)n−2 󰃑 µ+ pµ2/(1− p)

Therefore σ2/µ2 󰃑 1/µ+ p/(1− p) → 0 as n → ∞, and so X ∕= 0 almost surely. □
So p = lnn/n is a threshold value for the property of having an isolated vertex, since for all λ < 1,
we have p = λ lnn/n implying that the probability of having an isolated vertex is zero, and for all
λ > 1, the probability is one.

A different kind of threshold effect comes from considering the clique number CL(G). Here, we
fix p and increase n to consider graphs in G(n, p). We might guess that the distribution follows a
roughly bell-shaped distribution, but in fact there is a very narrow spike.

Proposition 6.9 (Random Clique Numbers)

Let 0 < p < 1 be fixed, and let d be a real number such that

󰀕
n

d

󰀖
× p(

d
2) = 1.

Then almost surely, G ∈ G(n, p) has clique number ⌈d⌉, ⌊d⌋, or ⌊d⌋ − 1.

Proof: Fix k and let the random variable X be the number of copies of Kk in G. Note that

µ = E[X] =

󰀕
n

k

󰀖
× p(

k
2), much like our expression involving d.

Note that X =
󰁓

α I(α), where I(α) is a set of indicator variables indicating that G[α] is complete.
Here, α runs over the k-sets of {1 . . . n}.

If k 󰃍 d+ 1, then we see that µ → 0 as n → ∞, so X = 0 almost surely.

If k 󰃑 d− 1, then we see that µ → ∞ as n → ∞. Also,

V =

󰀕
n

k

󰀖
× p(

k
2) ×

k󰁛

s=2

󰀕
k

s

󰀖󰀕
n− k

k − s

󰀖󰀓
p(

k
2)−(

s
2) − p(

k
2)
󰀔

Actually, there is some d such that CL(G) is d or d + 1 almost surely. In the sum, the first term
is equal to 󰀕

k

2

󰀖󰀕
n− k

k − 2

󰀖
p(

k
2)
󰀕
1

p
− 1

󰀖
󰃑

󰀕
k

2

󰀖󰀕
n− k

k − 2

󰀖
p(

k
2)−1

while the last term is at most 1. We can also check that these terms dominate the sum, so V/µ2 → 0
as n → ∞. This means that X ∕= 0 almost surely, as we desired. □
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7 Algebraic Methods

7.1 Moore Graphs

Previously, Definition 1.18 specified the distance function as a metric on a graph, given by the
minimum path length between two vertices. Further, we also mentioned the diameter of a graph,
which is defined to be

diam(G) = max {d(x, y) : x, y ∈ V } .

Corollary: G has diameter 1 if and only if G is complete (and has at least two vertices).

Corollary: The diameter of G is finite if and only if G is connected.

The motivating question for this section is “how many vertices can a graph with maximum degree
∆ have, given that the diameter is at most 2?”

We first try expanding from a vertex x. V (G) ⊆ {x} ∪ Γ(x) ∪ Γ(Γ(x)). Thus

n = |G| 󰃑 1 +∆+∆(∆− 1) = 1 +∆2

is an upper bound. Is it possible to attain this bound? Observe that any graph which does so
must be regular, as x was an arbitrary vertex which provides bound 1 + d(x)2.

Definition 7.1 (Moore Graph)

A k-regular graph of diameter 2 on 1 + k2 vertices is called a Moore graph. Equivalently, a
k-regular graph is a Moore graph if and only if every distinct pair of vertices x ∕= y has a
unique path between them of length at most 2.

Moore graphs cannot contain copies of C3 or C4, otherwise there would be multiple paths of length
at most 2. This means that the girth of any Moore graph G is at least 5.

For k = 2, we have |G| = 22 + 1 = 5. The only graph of order 5 with girth at least 5 is C5.

For k = 3, we have |G| = 32 + 1 = 10. In fact, the Moore graph with k = 3 is the Petersen graph!

k = 2 k = 3

We might conjecture that there are infinitely many such graphs, with one for each k. However,
there are in fact fewer than five!

The only Moore graphs are with k = 2, k = 3, k = 7, and possibly k = 57. We will devote the rest
of the section to proving this.
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7.2 Adjacency Matrices

Definition 7.2 (Adjacency Matrix)

Let G = (V,E) be a graph on V = {1 . . . n}. The adjacency matrix of G is the n× n matrix
A with entries

aij =

󰀫
1 ij ∈ E

0 otherwise

This is always a real and symmetric (thus diagonalisable) matrix with zero trace.

Example 7.3 (Adjacency Matrix)

We can draw an adjacency matrix for an arbitrary graph using this relation:

A =

󰀳

󰁅󰁅󰁅󰁅󰁃

0 1 0 0 1
1 0 1 1 1
0 1 0 1 0
0 1 1 0 1
1 1 0 1 0

󰀴

󰁆󰁆󰁆󰁆󰁄

1

25

34

=⇒

The adjacency matrix A encodes all the information inherent in G, so theoretically every property
of G is recoverable through A. In fact, we can use the matrix directly to show some results.

Recall the idea of a walk from Definition 1.11: a walk of length r from u0 to ur is a sequence
u0u1 . . . ur of r + 1 (not necessarily distinct) vertices, where each ui−1 is connected to ui.

Now consider the matrix A2 = A×A. We have

(A2)ij =

n󰁛

k=1

Aik ·Akj =

󰀫
the number of common neighbours of i and j

the number of walks of length 2 from i to j

which is equal to |Γ(i) ∩ Γ(j)|.

In general, (Ar)ij is the number of walks of length r from i to j.

There is a linear map Rn → Rn which maps x 󰀁→ Ax, where

(Aλ)i =

n󰁛

j=1

Aij · xj

Given a graph with adjacency matrix A with each vertex labelled with a number xi, applying A
to the vector x gives Ax, where each entry is the sum of the labels of each neighbour.

Since A is real and symmetric, it is diagonalisable, and so there is a basis of orthonormal eigen-
vectors e1 . . . en with corresponding eigenvalues λ1 󰃍 λ2 󰃍 . . . 󰃍 λn. (We can take orthonormality
and descending eigenvalues without loss of generality by reordering and scaling.)

Write λmax = λ1 and λmin = λn. We have
󰁓

λi = trA = 0. Unless G = En, this means λmin < 0
and λmax > 0.

Suppose that e1 . . . en is an orthonormal basis of eigenvectors. Take x ∈ Rn and write x =
󰁓

ciei
for ci ∈ R. with |x| =

󰁓
c2i = 1. Then Ax =

󰁓
ciλiei, and so 〈Ax, x〉 = (Ax) · x =

󰁓
λic

2
i .

Therefore
λmax = max

|x|=1
〈Ax, x〉 and λmin = min

|x|=1
〈Ax, x〉
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Proposition 7.4 (Eigenvalue Bounds)

Suppose G is a connected graph with adjacency matrix A.

1. If λ is an eigenvalue of G, then |λ| 󰃑 ∆(G).

2. ∆ is an eigenvalue if and only if G is regular, in which case its eigenvector is (1, 1, . . . , 1)
and its multiplicity is 1.

3. −∆ is an eigenvalue if and only if G is regular and bipartite. Its multiplicity is then 1.

4. λmax 󰃍 δ(G).

Proof: Consider the adjacency matrix A.

1. Choose the eigenvector x = (x1 . . . xn) ∕= 0 with eigenvalue λ. Let i be such that |xi| is
maximal. Without loss of generality, take xi = 1, so for all j we have |xj | 󰃑 1. Then

|λ| = |λxi| = |(Ax)i| =

󰀏󰀏󰀏󰀏󰀏󰀏

n󰁛

j=1

Aijxj

󰀏󰀏󰀏󰀏󰀏󰀏
=

󰀏󰀏󰀏󰀏󰀏󰀏

󰁛

j∈Γ(i)

xj

󰀏󰀏󰀏󰀏󰀏󰀏
󰃑

󰁛

j∈Γ(i)

|xj | = d(i) 󰃑 ∆(G)

2. If G is∆-regular, then clearly x = (1, 1, . . . 1) is an eigenvector with eigenvalue∆. Conversely,
taking λ = ∆ in the first point gives ∆ = (Ax)i =

󰁓
xj for the neighbours j of i. Hence

d(i) = ∆, and this is true for all i.

3. Taking x = 1 on X and −1 on Y where X∪Y is our bipartition, then Ax = −∆x. Conversely,
if −∆ is an eigenvalue, then the sum

󰁛

j∈Γ(i)

xj = −∆ =⇒ d(i) = ∆ and xj = −1 for every j ∈ Γ(i).

Repeating this gives us G being ∆-regular, and xk = ±1 with xixj = −1 for all edges (as G
is connected). G is then bipartite: we can partition it by the sign of the vertex label.

4. We must find x with |x| = 1 and 〈Ax, x〉 󰃍 δ. Take x = (1, 1, . . . 1). Then (Ax)i 󰃍 δ, so
〈Ax, x〉 󰃍 δ 〈x, x〉 = δn. Thus λmax 󰃍 δ.

Thus all four results hold. □
By Brooks’s Theorem (4.11), we know that χ(G) 󰃑 ∆+ 1. We can strengthen this bound.

Proposition 7.5 (Stronger Brooks’s Theorem)

In fact, for every graph G we have χ(G) 󰃑 λmax + 1 󰃑 ∆+ 1.

Proof: The |G| = 1 case is trivial, so assume |G| 󰃍 2. Choose v with d(v) = δ(G), and set
G′ = G − v. If we can show that λmax(G

′) 󰃑 λmax(G), then we are done, as we would be able to
colour G′ in λmax + 1 colours, and now d(v) = δ 󰃑 λmax, which means we can also colour v.

Now let A and B be the adjacency matrices of G and G′. B is formed form A by deleting the v’th
row and column. Without loss of generality, this is the last row and column. So we must show
that

max
x∈Rn−1,|x|=1

〈Bx, x〉 󰃑 max
x∈Rn,|x|=1

〈Ax, x〉

But this is simple, as for any x = (x1, x2, . . . xn−1) ∈ Rn−1, then y = (x1, x2, . . . xn−1, 0) ∈ Rn

satisfies |y| = |x| and 〈Bx, x〉 = 〈Ax, x〉. □
In fact, with some more work we could show that for any non-empty graph G, the chromatic
number χ(G) 󰃍 1− λmax/λmin. (Note that the smallest eigenvalue is negative.)
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7.3 Strong Regularity

Recall our notion of regularity from Definition 1.7. This can be thought of as a sort of indifference
or symmetry of vertices, whereby every vertex has the same degree. We expand this notion here.

Definition 7.6 (Strong Regularity)

Let k, b 󰃍 1 and a 󰃍 0. We say that a graph is strongly regular with parameters (k, a, b) if G
is k-regular, and any two distinct vertices x and y have:

• a common neighbours if x and y are adjacent

• b common neighbours if x and y are not adjacent.

The Petersen graph is strongly regular with parameters (3, 0, 1). C4 has (2, 0, 2) and C5 has (2, 0, 1).
Complete graphs Kn are trivially strongly regular (with b undefined) so we usually ignore them.

We see that a strongly regular graph must be connected: any two distinct vertices are either
adjacent or have b 󰃍 1 neighbours in common, so there is a path between any two vertices. In fact,
this argument shows that the diameter of G is at most 2.

We can find other bounds. For example, a 󰃑 k − 1: if each vertex has has k neighbours, it has at
most k − 1 neighbours in common with each of them.

John Conway (of Game of Life fame) posed the well-known “99 graph problem”, which asks for
a (14, 1, 2) strongly regular graph on 99 vertices. Strong regularity is a very restrictive property,
so this is quite difficult to achieve, and finding such a graph would have implications for other
combinatorial problems.

Theorem 7.7 (Hoffman-Singleton Theorem)

Let G be a graph on n vertices which is not the complete graph. Suppose G is strongly regular
with parameters (k, a, b). Then the numbers

1

2

󰀣
n− 1± (n− 1)(a− b) + 2k󰁳

(b− a)2 − 4(b− k)

󰀤

are integers.

Proof: Let |G| = n, and let A be the adjacency matrix of G. Clearly, G is connected, and since
G is k-regular, it has an eigenvalue k for the eigenvector v = (1, . . . , 1) of multiplicity 1. Let λ ∕= k
be an eigenvalue with eigenvector x. Taking A2 gives the number of walks of length 2, so

(A2)ij =

󰀻
󰁁󰀿

󰁁󰀽

k i = j

a ij ∈ E(G)

b otherwise

Thus we have

A2 = kI + aA+ b(J − I −A) where Jij = 1

=⇒ A2+(b− a)A+ (b− k)I = bJ

Applying A to x, noting that 〈x, v〉 = 0, so Jx = 0. Thus

λ2x = kx+ aλx− bx− bλx =⇒ λ2 + (b− a)λ+ (b− k) = 0

The remaining eigenvalues are therefore given by

λ, µ = (1/2)× (a− b±
󰁳
(b− a)2 − 4(b− k)).
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Suppose these have multiplicities r and s. As A is diagonalisable, we have r + s + 1 = n. Also,
since tr(A) = 0, we have λr + µs+ k = 0. Subtracting our equations gives us

(λ− µ)s = λ(n− 1) + k and λ− µ =
󰁳
(b− a)2 − 4(b− k),

which finally gives us the multiplicities we desire:

s, r =
1

2

󰀣
n− 1± (n− 1)(a− b) + 2k󰁳

(b− a)2 − 4(b− k)

󰀤
.

Of course, these must be integers, which completes the proof. □
So the adjacency matrix A really is quite powerful! We can actually prove a much more significant
theorem using this result, which we claimed earlier.

Theorem 7.8 (At Most Four Moore Graphs)

Let G be a Moore graph of degree k. Then k ∈ {2, 3, 7, 57}.

Proof: Moore graphs are strongly regular with degree k and parameters (k2 + 1, 0, 1). Thus

1

2

󰀕
k2 ± 2k − k2√

4k − 3

󰀖
∈ Z

If 2k−k2 = 0, this gives us the k = 2 case. Otherwise, 4k−3 = t2 for some t ∈ N with t | (2k−k2).
Then we have

k =
t2 + 3

4
and k2 − 2k = tr

for some r ∈ Z. This gives
󰀕
t2 + 3

4

󰀖2

− 2

󰀕
t2 + 3

4

󰀖
= tr =⇒ t4 − 2t2 − 16tr − 15 = 0

This means that t | 15, so t ∈ {1, 3, 5, 15}. This gives k ∈ {1, 3, 7, 57}, along with the k = 2 case.

However, k = 1 has the wrong diameter, so we are left with the four cases k ∈ {2, 3, 7, 57}. □

Remark 7.9 (Finding All Moore Graphs)

Can we actually find these graphs?

1. For k = 2, we have C5.

2. For k = 3, we have the Petersen graph.

3. For k = 7, we have the Huffman-Singleton graph, which is 7-regular on 50 vertices
and 175 edges. We construct this using five pentagons P0 . . . P4 and five pentagrams
Q0 . . . Q4. We then adjoin vertex t in Pi to vertex t+ ij in Qj , where indices are taken
modulo 5.

4. For k = 57, we seek a 57-regular graph on 3250 vertices with diameter 2. Such a graph
is not yet found, and so it is often called the missing Moore graph.

Note: We know that if the missing Moore graph exists, it cannot be vertex-transitive.

This is because the automorphism group Aut(G) acts transitively on vertices, so given v1 and v2 ∈
G there would necessarily be an automorphism σ satisfying σ(v1) = v2. In this case, |Aut(G)| 󰃑
375 < 3250 = |G|, so there cannot be such an automorphism.
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7.4 Group Theory

Aut(G) is the group of permutations of vertices preserving adjacency. Robert Frucht proved in
1939 that every finite group can be represented as the automorphism group of some finite graph.
In fact, it was showed 20 years later that any group can be represented as the automorphism group
of some (now possibly finite) graph, if one assumes the axiom of choice.

Definition 7.10 (Vertex Space)

The vertex space C0(G) of a graph G is the C-vertex space of all functions V (G) → C. If
V (G) = {v1 . . . vn}, then the dimension of C0(G) is in fact n. Elements of this space are of
the form

x =

n󰁛

i=1

xivi = (xi)
n

󰁿 󰁾󰁽 󰂀
weights

.

Each π ∈ Aut(G) induces an endomorphism of C0(G), given by the permutation matrix P . But
any permutation matrix corresponds to an endomorphism precisely when it commutes: AP = PA.
This group of matrices is therefore a faithful representation of Aut(G).

As always, everything comes back to graph theory: the classification of finite simple groups (as in
the famous ATLAS of Finite Groups) also relies on graphs!


