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1 Propositional Logic

1.1 Propositions

The language of propositional logic consists of a set P of primitive propositions, and the set L(P )
of propositions. These statements in the language are meaningful, and can be true or false.

Definition 1.1 (Set of Propositions L)

Given a set P of primitive propositions, the set L is defined to be the smallest set containing
P with ⊥ ∈ L (the symbol for false) such that if p and q are in L, then (p ⇒ q) is in L.

Often, P = {p1, p2, p3, . . .} is a countably infinite set of primitive propositions. In this case, we have
propositions in L like (p1 ⇒ p2) or (p1 ⇒ p2), (⊥ ⇒ (p1 ⇒ p2)), and ((p1 ⇒ p2) ⇒ (p1 ⇒ p3)).
Also, we have ((p ⇒ ⊥) ⇒ ⊥) for each p ∈ L.

The set L is built from P ∪ {⊥} inductively, which means that we can define it inductively. Define
L1 = P ∪ {⊥} and Ln+1 = Ln ∪ {(p ⇒ q) : p, q ∈ Ln}. Each of these are countable, by induction,
and L = L(P ) is the countable union of these sets, and thus countable.

In fact, every proposition is built uniquely using this construction. For each p ∈ L, either p ∈ P is
primitive, or p = ⊥, or p = (q ⇒ r) for unique q, r ∈ L.

Note: Each proposition is a finite string of symbols in the alphabet P ∪ {⊥,⇒, (, )}. However,
not every such string is a proposition: “(⇒ (⇒ ⊥⊥)⊥)” is nonsense.

Definition 1.2 (Valuation)

A definition-propositional-valuation on L is a function v : L → {0, 1} with v(⊥) = 0 satisfying:

v(p ⇒ q) =


0 if v(p) = 1 and v(q) = 0

1 otherwise

This ensures the value of ⊥ = false is 0, and a true statement doesn’t imply a false one.

For example, if v(p1) = 1 and v(p2) = 0, then v((⊥ ⇒ p1) ⇒ (p2 ⇒ p1)) = 1.

Proposition 1.3 (Valuations on Primitives)

If v and v′ are valuations which agree on P , then in fact they agree on L(P ). Also, for any
function w : P → {0, 1}, there is a valuation v on L such that v and w agree on P .

Proof: We have v(⊥) = v′(⊥) = 0 by definition, and by assumption they agree on P . Then they
agree on L1. Continue inductively, assuming that v and v′ agree on Ln.

Let p ∈ Ln+1 \ Ln. Then p = (q ⇒ r) for unique q, r ∈ Ln. By induction, v and v′ agree on q and
r. But then they must agree on p, and since p was arbitrary they agree on Ln+1. Thus they agree
on all Ln, and so they must agree on L.

For the second part, we define v(p) = w(p) for all p ∈ P , and v(⊥) = 0. This defines a unique
valuation v on L1. Having defined v on Ln for some n, write p ∈ Ln+1 \ Ln as p = (q ⇒ r)
for unique q, r ∈ Ln, and define v(p) using the rule based on v(q) and v(r). This gives a unique
extension of v to Ln+1: by induction, this gives a unique valuation v on all of L. □
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Definition 1.4 (Tautology)

Let t ∈ L. We say that t is a tautology if v(t) = 1 for all valuations v on L. For example,
(⊥ ⇒ ⊥) is a tautology, as any valuation v gives it value 1.

We now enrich our language by introducing a few more symbols.

notation expansion interpretation

⊤ (⊥ ⇒ ⊥) “true”: a tautology, true in all cases

¬p (p ⇒ ⊥) “not-p”: false if p is true and true if p is false

p ∨ q (¬p ⇒ q) “p or q”: true if either p or q is true

p ∧ q ¬(p ⇒ ¬q) “p and q”: true only if both p and q are true

Note: There are tautologies not involving the symbol ⊥, for example (p ⇒ (q ⇒ p)). One can
check that this statement is a tautology by checking every possible valuation for p and q in a truth
table. Such a table enumerates these values to check the possible valuations of the statement.

v(p) v(q) v(q ⇒ p) v(p ⇒ (q ⇒ p))

0 0 1 1

0 1 0 1

1 0 1 1

1 1 1 1

As desired, the valuation of (p ⇒ (q ⇒ p)) is always 1.

Example 1.5 (Important Tautologies)

The above statement has a heuristic interpretation: “a true statement is implied by anything”.
There are other such basic tautologies which are important:

1. “The law of excluded middle” is the tautology (¬¬p ⇒ p), or alternatively (p ∨ ¬p).
This is the statement that p is either true or false, in which case ¬p holds.

2. For any p, q, r ∈ L, the tautology (p ⇒ (q ⇒ r) ⇒ ((p ⇒ q) ⇒ (p ⇒ r))) holds. Note
that the truth table demonstrating this has 23 = 8 rows to check.

1.2 Semantic Entailment

Definition 1.6 (Semantic Entailment)

For S ⊆ L and t ∈ L, we say S semantically entails t if for any valuation v which satisfies
v(s) = 1 for all s ∈ S, we also have v(t) = 1. We write S ⊨ t.

This is an extension of the idea of implication to sets of propositions.

Corollary: t is a tautology if and only if ∅ ⊨ t. We write ⊨ t for short.

Example 1.7 (Modus Ponens)

We have {p, (p ⇒ q)} ⊨ q. The process of deducing q from p and (p ⇒ q) is known as modus
ponens, which is Latin for “affirming mode”.

(This is because if v(p) = 1 and v(q) = 0, then v(p ⇒ q) = 0 by the implication rule.)
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Definition 1.8 (Model)

For t ∈ L and a valuation v, we say that t is “true in v” (or “v is a definition-propositional-
model of t”) if v(t) = 1. Similarly, for S ⊆ L, we say v is a model of S if v(s) = 1 for all
s ∈ S.

Corollary: S ⊨ t if and only if t is true in every model of S.

1.3 Syntactic Entailment

A notion of proof consists of axioms and rules of deduction. These are statements taken as true
no matter what, and rules by which we can deduce more statements as true. In the model of
propositional logic, we have the following three axioms:

1. For p, q ∈ L, p ⇒ (q ⇒ p).

2. For p, q, r ∈ L, p ⇒ (q ⇒ r) ⇒ ((p ⇒ q) ⇒ (p ⇒ r)).

3. For p ∈ L, ¬¬p ⇒ p.

Note: These axioms are all tautologies.

In propositional logic, we also have only one rule of deduction.

Definition 1.9 (Modus Ponens)

From p and (p ⇒ q), we may deduce q.

How do we use this rule of deduction?

Definition 1.10 (Proof)

Given S ⊂ L and t ∈ L\S, a proof of t from S is a finite sequence of propositions t1 . . . tn ∈ L
such that tn = t, and for each ti we have either:

1. ti is an axiom of propositional logic.

2. ti ∈ S, so that ti is a premise or hypothesis

3. ti is obtained by modus ponens from earlier lines: there are j, k < i with tk = (tj ⇒ ti).

If there is such a proof of t from S, we say that S syntactically entails t, and write S ⊢ t. If t
is such that ∅ ⊢ t, we say that t is a theorem and write ⊢ t.

Example 1.11 (Proof given 2 Hypotheses)

We would like to show that {(p ⇒ q), (q ⇒ r)} ⊢ (p ⇒ r). We prove this as follows:

1. (p ⇒ (q ⇒ r)) ⇒ ((p ⇒ q) ⇒ (p ⇒ r)) (A2)

2. (q ⇒ r) ⇒ (p ⇒ (q ⇒ r)) (A1)

3. q ⇒ r (premise)

4. p ⇒ (q ⇒ r) (MP)

5. (p ⇒ q) ⇒ (p ⇒ r) (MP)

6. p ⇒ q (premise)

7. p ⇒ r (MP)
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Example 1.12 (Proof of a Theorem)

We would like to show that ⊢ (p ⇒ p). We prove this as follows:

1. p ⇒ ((p ⇒ p) ⇒ p) (A1)

2. (p ⇒ ((p ⇒ p) ⇒ p)) ⇒ ((p ⇒ (p ⇒ p)) ⇒ (p ⇒ p)) (A2)

3. (p ⇒ (p ⇒ p)) ⇒ (p ⇒ p) (MP)

4. p ⇒ (p ⇒ p) (A1)

5. p ⇒ p (MP)

Theorem 1.13 (Deduction Theorem)

Let S ⊆ L with p, q ∈ L. Then S ⊢ (p ⇒ q) if and only if (S ∪ {p}) ⊢ q.

Proof: Assume S ⊢ (p ⇒ q). Then we can write down a proof of (p ⇒ q) from S. Now, we can
simply add p (premise) and q (MP) to obtain a proof of q from S ∪ {p} as desired.

Now suppose that (S ∪{p}) ⊢ q, and let t1 . . . tn be a proof of q witnessing this. Then S ⊢ (p ⇒ ti)
for all i, which we demonstrate by induction. In the case of i = n, this will show S ⊢ (p ⇒ q).

If ti is an axiom or ti ∈ S, we can prove this using:

1. ti (premise or axiom)

2. ti ⇒ (p ⇒ ti) (A1)

which gives a proof of p ⇒ ti (by MP). Otherwise, ti = p in which case we wish to show only that
S ⊢ (p ⇒ p). But we have seen this is a theorem, so clearly it is provable. Finally, we must deal
with the case where ti is an instance of modus ponens, and tk = (tj ⇒ ti) for j, k < i. Here:

1. (p ⇒ (tj ⇒ ti)) ⇒ ((p ⇒ tj) ⇒ (p ⇒ ti)) (A2)

2. (p ⇒ tj) ⇒ (p ⇒ ti) (MP)

which gives a proof of p ⇒ ti (again by MP).

Thus S ⊢ (p ⇒ ti) for all 1  i  n, in particular, as tn = q, we have S ⊢ (p ⇒ q). □
Corollary: The symbol “⇒” really does behave like implication in familiar formal proofs!

We now have two notions of entailment: semantic entailment ⊨ and syntactic entailment ⊢. We
want to prove the completeness theorem, which states that these two notions are equal.

This splits into two parts: the Soundness Theorem claims that (S ⊢ t) implies (S ⊨ t), while the
Adequacy Theorem means the converse. This means that our syntactic system is sound (it doesn’t
prove false statements) and that it is adequate (it is able to prove all true statements).

Theorem 1.14 (Soundness Theorem)

If S ⊆ L and t ∈ L where S ⊢ t, then S ⊨ t.

Proof: Let t1 . . . tn be a proof of t from S. Let v be a model of S. We require v(t) = 1. We prove
this via induction on the steps ti.

Suppose ti is an axiom. Then it is a tautology, and so v(ti) = 1. Similarly, if ti is a premise, then
ti ∈ S, and so v(ti) = 1 since v is a model of S.

Now suppose ti is an application of modus ponens. All previous lines have value v(tj) = v(tk) = 1,
so given that tk = (tj ⇒ ti), we must have v(ti) = 1 as well. Thus v(t) = v(tn) = 1, ie. S ⊨ t. □
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Now, we aim for the Adequacy Theorem, which is the converse of this statement. To do so, we
introduce a few concepts.

Definition 1.15 (Consistency)

Let S ⊆ L. We say S is inconsistent if S ⊢ ⊥, and consistent otherwise.

Corollary: For the special case of consistency, the Adequacy Theorem holds. If S ⊨ ⊥, then any
model v of S has v(⊥) = 1, but this is not allowed, so in fact there cannot be a model of S.

Definition 1.16 (Deductive Closure)

A set S ⊆ L is deductively closed if every t ∈ L with S ⊢ t is itself contained in S.

Note: Every deductively closed set must be infinite, as for any t ∈ S there is a proof of t ⇒ (t ⇒ t)
from S using the first axiom. (Equivalently, as ⊤ is a theorem, there are infinitely many theorems).

This definition allows us to prove an important theorem.

Theorem 1.17 (Model Existence Lemma)

Let S ⊆ L. If S is consistent, then S has a model.

Proof: Let us build up such a model by construction. Define v by v(t) = 1 for all t ∈ S, with
v(⊥) = 0. More generally, if S ⊢ t, then by the Soundness Theorem v(t) = 1 for any such t. Thus
we might first try

v(t) =


1 if S ⊢ t

0 otherwise

Unfortunately, this is nonsense. It is quite possible that S ∕⊢ t and S ∕⊢ ¬t. We will enlarge S
to avoid this issue. (Note that we only consider the case where set P of primitive propositions is
countable: we prove the general case later on in 3.16.)

Consider the recursive definition of the set of propositions (following 1.1). We note that L must
be countable as a consequence of this definition, as the countable union of countable sets Ln.

We enumerate L as t1, t2 . . . and consider consistent sets T ⊆ L. If t ∈ L, then one of T ∪ {t} or
T ∪ {¬t} is consistent. If not, then we would have (T ∪ {t}) ⊢ ⊥ and (T ∪ {¬t}) ⊢ ⊥, so by the
Deduction Theorem (1.13) we have both T ⊢ t and T ⊢ (t ⇒ ⊥), and hence Modus Ponens (1.9)
yields T ⊢ ⊥, contradicting the consistency of T .

Now start with the consistent set S0 = S. Define the sets Sn by induction, assuming that Sn−1 is
defined and consisrent. Then let Sn be either Sn−1 ∪ {tn} or Sn−1 ∪ {¬tn} so that it is consistent.
Finally, we define S̄ to be the union of these Sn.

Observe that S ⊆ S̄., and for all t ∈ L either t ∈ S̄ or ¬t ∈ S̄. Also, S̄ is consistent: if there was a
proof witnessing S ⊢ ⊥, then since this proof is finite it uses a finite number of propositions, and
so there is some Sn which contains all those propositions, which would then be inconsistent.

S̄ is deductively closed. Indeed, if t /∈ S then ¬t = (t ⇒ ⊥) ∈ S. So we can write down a proof of
t from S, and add the lines t ⇒ ⊥ (premise) and ⊥ (MP), so S̄ would not be consistent.

We now define the valuation v : L → {0, 1} by

v(t) =


1 if S̄ ⊢ t (that is, t ∈ S̄)

0 otherwise

which is a model of S̄ and thus a model of S, once we prove it is a valuation. Note that this cc
indeed satisfies v(⊥) = 0 since ⊥ /∈ S̄ by deductive closure and consistency.
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We consider three cases.

1. If v(p) = 1 and v(q) = 0, we need v(p ⇒ q) = 0. If not, then we have S̄ ⊢ (p ⇒ q). This
allows us to write down a proof of p ⇒ q from S̄ and follow it by p (premise) and q (MP) to
attain a proof of q from S̄. By deductive closure, q ∈ S̄, so v(q) = 1 (a contradiction).

2. If v(q) = 1, we need v(p ⇒ q) = 1. Given q, we can write down the proof q ⇒ (p ⇒ q) (A1),
q (premise), and then p ⇒ q (MP). So S̄ ⊢ (p ⇒ q), so v(p ⇒ q) = 1 as required.

3. Finally, consider v(p) = 0, so we need v(p ⇒ q) = 1, that is S̄ ⊢ (p ⇒ q). By the Deduction
Theorem (1.13) this is equivalent to S̄ ∪ {p} ⊢ q. We can do this using p (premise), p ⇒ ⊥
(premise, since p /∈ S̄), ⊥ (MP), ⊥ ⇒ ((q ⇒ ⊥) ⇒ ⊥) (A1), and then using MP to prove ¬q
followed by q. Therefore we have v(p ⇒ q) = 1 as required.

Therefore this v is a valuation, and thus a model of S̄ and thereby S. □

Theorem 1.18 (Adequacy Theorem)

If S ⊆ L and t ∈ L where S ⊨ t, then S ⊢ t.

Proof: Since S ⊨ t, we have S ∪ {¬t} ⊨ ⊥. Then S ∪ {¬t} ⊢ ⊥, and so by the Deduction Theorem
we have S ⊢ ¬¬t. We then add the lines ¬¬t ⇒ t (A3) and t (MP) to show S ⊢ t. □

Theorem 1.19 (Completeness Theorem)

The notions of semantic and syntactic entailment “⊨” and “⊢” are in fact equivalent: if S ⊆ L
and t ∈ L, then S ⊨ t ⇐⇒ S ⊢ t.

Proof: Obvious by the Soundness Theorem (1.14) and the Adequacy Theorem (1.18). □

Theorem 1.20 (Compactness Theorem)

Let S ⊆ L and t ∈ L. If S ⊨ t, then there is a finite subset S′ ⊆ S with S ⊨ t.

Proof: By the Completeness Theorem, we may replace “⊨” by “⊢”, which makes the proof trivial:
take a proof witnessing S ⊢ t, and define S′ to be the finite set of premises used. □
Note: This is highly nontrivial without the Completeness Theorem!

Corollary: Let S ⊆ L. If every finite subset of S has a model, then S has a model.

Proof: Suppose that S does not have a model. Then S ⊨ ⊥. By the Compactness Theorem, there
is a finite subset S′ ⊆ S with S′ ⊨ ⊥, which contradicts S′ having a model. □
Note: This corollary is actually equivalent to the Completeness Theorem. If S ⊨ t, then we have
S ∪ {¬t} ⊨ ⊥. Then there is a finite subset S′ ⊆ S with S′ ∪ {¬t} ⊨ t, and so S′ ⊨ t.

Theorem 1.21 (Decidability Theorem)

Let S ⊆ L be a finite set with t ∈ L \ S. Then there is an algorithm which can determine in
finite time whether S ⊢ t.

Proof: By the Completeness Theorem, we may replace “⊢” by “⊨”, which makes the proof trivial:
if there are n primitive propositions which occur in S ∪ {t}, simply enumerate a truth table with
2n possible values, and evaluate v(t) to see whether v(t) is always 1. □
Note: This is again highly nontrivial without the Completeness Theorem! If S ⊢ t, we can write
proofs from S and eventually arrive at t, but if S ∕⊢ t then this algorithm never terminates.
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2 Well-Orderings and Ordinals

2.1 Orderings and Order-Isomorphism

We now consider orderings, which are ways of equipping sets with a notion of “bigger” elements.

Definition 2.1 (Total Order)

A linear (or total) order on a set X is a binary relation < on X which is:

1. irreflexive: for all x ∈ X, we have ¬(x < x).

2. transitive: for all x, y, z ∈ X, we have ((x < y) ∧ (y < z)) ⇒ (x < z).

3. trichotomous: for all x, y ∈ X, we have (x < y) ∨ (x = y) ∨ (y < x).

Note that precisely one of the three options in trichotomy occurs. For example, if x = y, then
neither x < y nor y < x, and if x < y, then y < x implies x < x by transitivity, violating the
irreflexivity condition.

We say that “X is linearly ordered by <” if the relation < satisfies this definition. In general, we
may say that “X is a linearly ordered set”.

Note: When we use the symbols ∧, ¬, and so on, we are back to simply using these by the usual
definitions we know and love, rather than the overly formal meanings from the previous section!

Example 2.2 (Linearly Ordered Sets)

The sets N, Z, Q, and R are linearly ordered under the usual order <.

An important non-example is the relation on the powerset ℘ (X) given by a < b if and only
if a ⊂ b. This is not trichotomous for |X| > 2: if x, y ∈ X then neither {x} nor {y} are less
than the other.

Note: For a linear order < on a set X, we write x > y for y < x as notational shorthand.

Definition 2.3 ()

For a linear order < on a set X define the relation  by x  y if and only if (x < y)∨ (x = y).
Note that this relation satisfies:

1. reflexivity: x  x for all x ∈ X.

2. antisymmetry: if x  y and y  x, then x = y.

3. transititivty: if x  y and y  z, then x  z.

4. trichotomous: either x  y or y  x (or both, if x = y).

Note: If a set X is linearly ordered by <, then every subset Y ⊆ X is also linearly ordered by the
restriction of < to Y .

Definition 2.4 (Well-Ordering)

A well-ordering of a set X is a linear order < on X such that every nonempty subset of X
has a least element satisfying (∀S ⊆ X) : (S ∕= ∅ =⇒ (∃m ∈ S) : (∀x ∈ S, m  x)).

This least element m must be unique by the antisymmetry of .
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Example 2.5 (Well-Ordering)

N with the usual order is well-ordered. Z is not (for example, the set of negative integers has
no least element). However, Z can be well-ordered using another relation:

x < y ⇐⇒ (|x| < |y|) ∨ ((x = −y) ∧ (x < 0))

which orders the integers as 0,−1, 1,−2, 2,−3, 3, . . . , which is a well-ordering.

R cannot be well-ordered. The usual ordering works for some sets like [1, 2], but not sets like
(1, 4) ∪ (5, 6) or R \Q.

Note: If < is a well-ordering of X, say “X is well-ordered by <” or “X is a well-ordered set”.

Definition 2.6 (Order-Isomorphism)

Let X and Y be linearly ordered sets. Then we say X and Y are order-isomorphic if there is
an order-preserving bijection: a function f : X → Y which respects the order in that

(x < y) =⇒ (f(x) < f(y)) for all x, y ∈ X.

Note that f−1 is then also an order-isomorphism, so x < y ⇐⇒ f(x) < f(y).

Corollary: If X and Y are order-isomorphic linearly ordered sets, then if X is well-ordered then
Y must also be well-ordered by the isomorphism.

Example 2.7 (Order-Isomorphism)

N is isomorphic to Q, but it the sets are not order-isomorphic. However, Q is order-isomorphic
to Q \ {0}. Similarly, define

A =


1

2
,
2

3
,
3

4
, . . .


=


n

n+ 1
: n ∈ N


.

Then A is well-ordered and order-isomorphic to N by the obvious isomorphism. However:

1. B = A ∪ {1} is well-ordered but not order-isomorphic to A, since it has a maximum.

2. C = A ∪ {a+ 1 : a ∈ A} is also well-ordered but not order-isomorphic to A or B, since
it has infinite sets with a maximum.

Definition 2.8 (Initial Segment)

A subset I ⊆ X of a linearly ordered set X is an initial segment of X if for every element
x ∈ I, I contains all the predecessors of x. That is, (x ∈ I) ∧ (y < x) =⇒ (y ∈ I).

For example, {1, 2, 3, 4} is an initial segment of N, but {1, 2, 3, 5} is not.

A proper initial segment is an initial segment I ∕= X. The sets Ix = {y ∈ X : y < x} is an
example of this for any x ∈ X, since x /∈ Ix.

Corollary: In general, the Ix are not the only types of initial segment: the set R0 is not of this
form. However, the Ix are the only types of initial segments in the case of X being well-ordered.

Proof: If I is a proper initial segment of a well-ordered set X, then I = Ix for the least element
x ∈ X \ I. If y < x, then y /∈ X \ I, so y ∈ I. Conversely, f y ∈ I and x < y, then x ∈ I by the
fact that I is an initial segment. Therefore I = Ix. □
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Proposition 2.9 (Order-Isomorphism Restriction)

Suppose X and Y are well-ordered sets, and I ⊆ Y is an initial segment of Y . If f : X → I
is an order-isomorphism, then for every x ∈ X we have

f(x) = min(Y \ {f(y) : y < x}).

Proof: Fix x ∈ X and let A = Y \ {f(y) : y < x}. Note that A ∕= ∅, as f(x) ∈ A. Let a = minA.
Then a  f(x), so a ∈ I. Therefore a = f(z) for some z ∈ X. We want to show that z = x.

Since f(z) = a  f(x), then certainly z  x, since f is order-preserving. If z < x, then f(z) /∈ A,
that is a /∈ A. But this is a contradiction, so z ∕< x, and therefore z = x as required. □

Proposition 2.10 (Proof by Induction)

Let X be a well-ordered set and S ⊆ X be a set such that for every x ∈ X, if y ∈ S for all
y < x, then x ∈ S. Then S = X.

Proof: If not, take a minimal “counterexample”: that is, x = min(X \ S). Then for y < x, we
have y ∈ S by minimality. But by definition, this means x ∈ S, a contradiction. □
Note: We really do require well-ordering here. In R under the usual order, the set R0 has this
property, but is clearly not the entire set.

Note: The usual formulation of “induction” for the natural numbers takes the set S to be defined
by some property p with S = {n ∈ N : p(n)}. The “base case” corresponds to n = 1, since there
are no such m < n, and thus we require n ∈ S. This is already contained in our assumption.

Proposition 2.11 (Unique Order-Isomorphism)

Let X and Y be order-isomorphic well-ordered sets. Then there is a unique order-isomorphism
f between them.

Proof: Assume f and g are order-isomorphisms X → Y . We prove the statement f(x) = g(x) for
all x ∈ X by induction. Fix x ∈ X and assume that for all y < x, f(y) = g(y). This is called the
induction hypothesis. We want to show that then in fact f(x) = g(x) as well.

By Proposition 2.9, we know that f(x) = minF and g(x) = minG, where

A = Y \ {f(y) : y < x} B = Y \ {g(y) : y < x} .

But by assumption, these are the same set, and so have the same minimum. Thus f(x) = f(y).
By induction, we therefore have {x ∈ X : f(x) = g(x)} = X, and thus f = g as required. □
Note: Again, this does not work for arbitrary linearly ordered sets. For example, from Z → Z
there is an infinite family of order-isomorphisms given by fk : n → n+ k for k ∈ Z.

Induction has allowed us to prove things. Now, we need a tool to construct things: recursion.

Remark 2.12 (Formal Functions)

Recall that a function from a set X to a set Y is a subset f ⊆ X × Y such that for each
x ∈ X, we have some y ∈ Y with (x, y) ∈ f , and moreover this value is unique: if (x, y) ∈ f
and (x, z) ∈ f , then actually y = z. Of course, we write f(x) = y for (x, y) ∈ f , or f : x → y.

Notice that f ∈ ℘ (X × Y ). For a subset Z ⊆ Y , the restriction of f to Z is given by the set
f |Z = {(x, y) ∈ f : x ∈ Z}. This is a function Z → Y , so f |Z ∈ ℘ (Z × Y ) ⊆ ℘ (X × Y ).
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Theorem 2.13 (Definition by Recursion)

Let X be a well-ordered set and Y an arbitrary set. Then for any function G : ℘ (X × Y ) → Y
there is a unique f : X → Y such that for all x ∈ X, we have f(x) = G(f |Ix).

For example, we take x = minX. Then f(x) = G(∅). Then, let y = minX \ {x}. Then
f(y) = G({x,G(∅)}) and Iy = {x}, and so on.

Say h is an attempt if h is a function I → Y where the domain of h (denoted domh) is an
initial segment (2.8) I ⊆ X and for all x ∈ domh, h(x) = G(h|Ix).

Then, there is a unique attempt whose domain is X.

Proof: We first show that if h and h′ are attempts, then h(x) = h′(x) for all x in the intersection
domh ∩ domh′, by induction. This will show uniqueness.

We fix x in this intersection, and assume h(y) = h′(y) for all y < x (the induction hypothesis).
Note that domh ∩ domh′ is an initial segment of X. We have h(x) = G(h|Ix) (because h is an
attempt) and G(h|Ix) = G(h′|Ix) = h′(x), by the induction hypothesis, as required.

Now, we show existence. Let f be the union of all attempts. Then for any x, there is an attempt
h defined at x, so h(x) is independent of h by the above. Therefore f is indeed a function. What
is its domain? Well it is the union of the domains of all attempts, which is an initial segment of
X. So given any x ∈ dom f , there is an attempt h defined at x, and f(x) = h(x).

It follows that f(y) = h(y) for all y < x. But then f(x) = h(x) = G(h|Ix) = G(f |Ix). This means
that f is an attempt! It remains to check that its domain is the entire set X, but this is easy to
do. If not, dom f = Ix for some x ∈ X. This cannot be true, since there would be no attempt
defined at x, but f ∪ {(x,G(f))} is such an attempt. □

Proposition 2.14 (Subset Collapse)

Let Y be a well-ordered set and X ⊆ Y . Then there is a unique initial segment of Y which
is order-isomorphic (2.6) to X.

Proof: First, we show uniqueness. Assume that f is an order-isomorphism from X to some initial
segment of Y . By Proposition 2.9, f(x) = min(Y \ {f(y) : y < x}) for all x. By induction, f must
be uniquely determined, as in the proof of order-isomorphisms being unique (2.11).

Now, we show existence. As the case Y = ∅ is trivial, we take Y ∕= ∅ and fix y0 ∈ Y . Define the
function f : X → Y by recursion (2.13), using:

f(x) =


min(Y \ {f(y) : y < x}) if this is non-empty

y0 otherwise

We first prove that the otherwise clause does not actually arise, by proving that f(x)  x for all
x ∈ X by induction. Fix x ∈ X and assume that f(y)  y for all y < x. But then we must have
x ∈ Y \ {f(y) : y < x}, so the minimum of this set is at most x. Since we set f(x) to this value,
we have f(x)  x, and so by induction this holds everywhere.

Now fix y < x, and notice that f(x) ∈ Y \ {f(z) : z < x} ⊆ Y \ {f(z) : z < y}. Then f(y)  f(x),
but we cannot have equality, since f(y) ∈ Y \ {f(z) : z < y}. Thus f is order-preserving, and in
particular must be injective.

Let a ∈ Y \ im(f). We show that f(x) < a for all x ∈ X. By induction, fix x ∈ X and assume that
f(y) < a for all y < a. But then a ∈ Y \ {f(y) : y < x}, and so f(x)  a, since we choose f(x) to
be the minimum of this set. But f(x) ∕= a, since a /∈ im(f), so f(x) < a too. By induction, im(f)
is therefore an initial segment of Y , and so we are done. □
Corollary: No well-ordered set is order-isomorphic to a proper initial segment of itself.



13 · Logic and Set Theory Avish Kumar

2.2 Ordering Well-Ordered Sets

For well-ordered sets X and Y , we write X  Y for “X is order-isomorphic to some initial segment
of Y ”. Is this notation sensible? In fact, it is: we have trichotomy for this relation.

Theorem 2.15 (Order-Isomorphism Trichotomy)

Let X and Y be well-ordered. Then X  Y or Y  X.

Proof: Assume Y ∕ X. In particular, Y ∕= ∅, so fix y0 ∈ Y . Define f : X → Y by recursion:

f(x) =


min(Y \ {f(y) : y < x}) if this is nonempty

y0 otherwise

Assume the “otherwise” case arises. Then there is a least x ∈ X where this happens. Then consider
the initial segment Ix. Since Y \ {f(y) : y < x} = ∅, we must have f(Ix) = Y , and so for all y < x
we have f(y) = min(Y \ {f(z) : z < y}). Previously (in Proposition 2.14), we showed that f |Ix is
order-preserving. So Y is order-isomorphic to an initial segment of X: a contradiction.

If the “otherwise” case doesn’t arise, then f is an order-preserving function with im(f) an initial
segment of Y , and so X  Y , which proves trichotomy. □
Can we have both directions of this relation hold? Obviously we can, for example if X = Y . But
in fact this only happens when X and Y are order-isomorphic.

Proposition 2.16 (Order-Isomorphism Equivalence)

If X and Y are well-ordered sets with X  Y and Y  X, then they are order-isomorphic.

Proof: Let f : X → Y and g : Y → X be order-isomorphisms to initial segments of Y and X
respectively. Then g ◦ f : X → X is an order-isomorphism to an initial segment of X. The range
of the only such order-isomorphism is X itself, so g ◦ f is the identity function on X. Similarly,
f ◦ g is the identity function on Y , and so f and g are inverses as required. □
We write X < Y for well-ordered sets with X  Y and X not order-isomorphic to Y .

Corollary: < is a linear order (2.1) on the collection of well-ordered sets, if we identify sets which
are order-isomorphic to each other as being equivalent. Reflexivity is obvious, transitivity is easy
to show, and we have just shown trichotomy.

Note: The natural question to ask now is whether the collection of all well-ordered sets, given
that it is linearly ordered, is in fact itself well-ordered. We return to this later.

Note: We can construct a new well-ordered set from any old one. For any well-ordered set X, pick
any z /∈ X and let X+ = X ∪ {z} such that the well-ordering on X holds with x < z for all x ∈ X.
Then X+ is clearly also well-ordered, and unique up to order-isomorphism, with X < X+.

Note: Let {Xi : i ∈ I} be a set of well-ordered sets Xi, indexed by some index set I. Then we
want to show that this set has an upper bound: there exists a well-ordered set X with Xi  X for
all i ∈ I. We cannot yet prove this in general, but we consider a special case for now.

Definition 2.17 (Extension, Nesting)

Given well-ordered sets (X,<X) and (Y,<Y ), we say Y extends X if X is an initial segment
of Y and <X is the restriction of <Y to X.

We say that a collection {Xi : i ∈ I} of well-ordered sets is nested if for all i, j ∈ I either Xi

extends Xj or Xj extends Xi.
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Proposition 2.18 (Nested Collection Upper Bound)

Let X = {Xi : i ∈ I} be a nested set of well-ordered sets. Then there is a well-ordered set X
which is an upper bound for X , such that Xi  X for all i ∈ I.

Proof: Take X to be the union


i∈I Xi. For x, y ∈ X, we let x < y if there is some i ∈ I such
that x, y ∈ Xi and x <i y within this set Xi. We claim that this is our upper bound.

Since the Xi are nested, it follows that < on X is a well-defined linear order such that each Xi

is an initial segment of X. Let S ⊆ X be a non-empty subset. Then there is some i ∈ I with
Xi ∩ S ∕= ∅. Since Xi is well-ordered, Xi ∩ S has a least element, say x. But now x must be the
least element of S, since Xi is an initial segment of S. □
Note: In fact, this construction yields the least upper bound for X : for any other upper bound
Y , we have X  Y .

Note: This proposition holds even without the assumption that the Xi are nested.

2.3 Ordinals

Now, we consider ordinals. These are the same as the well-ordered sets on which we have focused
so far in this section, but we treat them differently.

Definition 2.19 (Ordinal)

An ordinal is an class of well-ordered sets under the order-isomorphism equivalence relation.
The order type of a well-ordered set X is the unique ordinal to which it is order-isomorphic.

Note: This definition is still quite informal: later on, Definition 5.17 is more rigorous.

Definition 2.20 (Relation on Ordinals)

Let α and β be ordinals, and X and Y be well-ordered sets of order type α and β respectively.
Then we say α  β to mean that X  Y , and α < β to mean X < Y .

We also define α+ to be the order type of X+.

Note: This is indeed well-defined: they don’t depend on the specific sets X and Y .

Corollary: For ordinals, we therefore have α  β or β  α, with both of these relations holding
if and only if α = β.

Example 2.21 (Basic Ordinals)

For k ∈ N0, we write k for the order type of a well-ordered finite set of size k.

We write ω for the order type of N (or equivalently N0).

Notice that Q contains subsets of order type 0, 1, 2, and so on, as well as of order type ω.
For example, the set A from Example 2.7 has order type ω.

However, the set A ∪ {1} doesn’t have any of these order types: it must be something more.
In fact, it must be α+.

Now, we consider the ordinals as being themselves well-ordered.
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Proposition 2.22 (Ordinals Ordered)

Let α be some ordinal. Then the set of all ordinals which are strictly less than α form a
well-ordered set, and this set has order type α.

Proof: Let X be a well-ordered set whose order type is α, and let X ′ be the set of proper initial
segments of X. X ′ is linearly ordered (genuinely, not just up to order-isomorphism) by <. Then
the map X → X ′, x → Ix is an order-isomorphism, and hence X ′ is well-ordered by <.

But then so is the set of order types of proper initial segments of X, and this is exactly the set of
ordinals less than α. In fact, since the map Y → order type of Y is an order-isomorphism, the set
of such ordinals must have order type α. □
Note: We write the set of ordinals less than α as Iα : {β an ordinal : β < α}.

Corollary: Iα always has order type α.

Theorem 2.23 (Least Ordinal)

Let S ∕= ∅ be a set of ordinals. Then S has a least element.

Proof: Let α ∈ S. If α is not a least element, then S ∩ Iα ∕= ∅. We have seen that S ∩ Iα has
a least element β. Since Iα is an initial segment of ordinals (γ < β and β ∈ Iα =⇒ γ ∈ Iα), it
follows that β must in fact be the least element of S. □
So we have seen that any nonempty set of ordinals has a least element. Does this mean that the
set of ordinals is thus well-ordered? Well, it would, if such a set existed. But actually the so-called
“set of ordinals” cannot exist!

Theorem 2.24 (Burali-Forti Paradox)

The ordinals do not form a set.

Proof: Assume that X is a set consisting of all ordinals. Then X is well-ordered by <. Let α be
the order type of X. But then α ∈ X, and so Iα is a proper initial segment of X of order type α:
in particular, Iα is order-isomorphic to X. But this is a contradiction. □
Note: We let ON be the class of all ordinals. Remember that is not a set! The difference is that
a class cannot be a member of anything: it is not an entity in itself, just a convenient structure
for us to talk about a collection of objects with a given property.

Corollary: Let S = {αi : i ∈ I} be a set of ordinals. Using the set {Iαi
: i ∈ I}, there exists an

ordinal α which is an upper bound for S. Then S has a least upper bound, denoted by supS.
Note that this is the least element of {β ∈ Iα ∪ {α} : β is an upper bound of S}.

So far, we have seen the ordinals 0, 1, 2, and so on for n ∈ N. We have also seen the supremum
of the collection of these ordinals, which is ω. Next, we have ω+, which we will denote ω + 1.
For now, this is just a notational quirk, but in section ?? we will define ordinal addition, and this
definition will be consistent with it.

We then define ω + 2, ω + 3, and so on, and the supremum of {ω + n : n ∈ N0} is denoted ω + ω,
or equivalently ω × 2. We then continue this pattern, eventually defining ω × 3, ω × 4, and so on.
After this, we define sup {ω × n : n ∈ N} to be ω2.

We can then continue this all the way to ω2 + ω, then ω2 + ω × 2, and so on, which is eventually
bounded by ω2 × 2, and then we continue this to ω2 × 3 and eventually ω2 × ω = ω3. After this,
we exhaust the ωn, and must define ωω.

From here, we get ωω+1, all the way up to ωω+ω, then ωω+ωω = ωω×2, then ωω×ω = ωω+1. This
eventually yields ωω+n for each n, then ωω+ω = ωω×2, then ωω×n for each n, then ωω×ω = ωω2

.
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But then this can be continued to yield ωωn

for each n, and the set of these is bounded by ωωω

.
Eventually, this can be extended to a tower of ω which is n high for each n, and after this a tower
which is ω high. This tower is called ε0.

Eventually, we get ε1, and then ε2, and then εn for each n, then εω. After this, we soon get εε0 .
Finally, we turn these into an infinite tower of descending ε.

But of course this can also be continued, and so on ad infinitum (and beyond!)

All of the ordinals we have constructed so far have been countable. Are there uncountable ordinals?

Theorem 2.25 (Uncountable Ordinals)

There exist uncountable ordinals.

Proof: If there is an uncountable ordinal, then there is a least uncountable ordinal α. Then Iα is
the set of all countable ordinals, and so is the set of order-types of well-orderings of subsets of N.

Let A = {(M,R) ∈ ℘ (N)× ℘ (N× N) : R is a well-ordering of M}. Then the set B of order types
of elements of A consists of all countable ordinals.

Let ω1 = supB. If ω1 is countable, then so is ω+
1 , and so ω+

1 ∈ B. But then ω+
1  ω1, which is a

contradiction. Therefore ω1 must be uncountable. □
Corollary: The ordinal ω1 constructed in the proof is the least uncountable ordinal. Suppose we
have α < ω1 = supB. Then there exists some β ∈ B with α < β. Since β is countable, so is α.

Corollary: Every proper initial segment of ω1 is countable.

Corollary: If α1, α2, . . . is a sequence of countable ordinals, then so is α = sup {an : n ∈ N}. This
is because the set Iα is a countable union of countable sets.

Theorem 2.26 (Hartog’s Lemma)

For any set X, there is some ordinal γ which does not inject into X, which we write as γ(X).

Proof: This is a generalisation of the previous theorem, choosing X in place of N. Form the set
B consisting of order-types of well-orderings of subsets of X, and let γ = (supB)+.

If γ injects into X, it induces a well-ordering on a subset of X of order type γ. Then γ ∈ B, and
so we have γ = (supB)+  supB = γ, which is a contradiction. □
Note: This theorem states something slightly stronger than “there is no biggest ordinal”. In fact,
any set has a bigger ordinal!

Definition 2.27 (Successor, Limit Ordinal)

Let α be an ordinal. We consider two cases, depending whether Iα has a greatest element.

1. Suppose Iα has a greatest element β. Then Iα = Iβ ∪ {β}. Then α = β+, and so we
say α is the successor of β. Here, β = sup Iα < α.

2. Now suppose Iα has no greatest element. Then if β ∈ Iα (equivalently, β < α) then
there is some β < γ < α. It then follows that α = sup Iα: no other element can be an
upper bound, as there is always some bigger element. We say α is a limit ordinal.

For example, 0 is a limit ordinal. The set I0 = ∅ has no greatest element (indeed, no element).
However, 0+ = 1 is a successor. Indeed, any n ∈ N is a successor of n− 1.

Also, ω is a limit ordinal. The set N has no upper bound, since any n has n < n + 1 < ω.
However, ω+ = ω + 1 is a successor.
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2.4 Ordinal Arithmetic

Now, we formalise our notion of adding ordinals. We had loosely constructed ω+1 and even ω+ω,
but introduced this as notation only, without ever formally defining ordinal addition.

Definition 2.28 (Ordinal Addition)

For ordinals α and β, we define the ordinal sum α+ β by recursion on β with α fixed:

1. α+ 0 = α for the unique zero ordinal.

2. α+ β+ = (α+ β)+ for a successor ordinal β.

3. α+ λ = sup {α+ β : β < λ} for a nonzero limit ordinal λ.

This matches the heuristic definition we have used, and respects integer addition.

Note: Technically, recursion as defined in 2.13 relies on a set, but we saw in 2.24 that the ordinals
do not form a set. We should therefore fix an ordinal γ and define α+ β by recursion on β in the
well-ordered set Iγ . By uniqueness in recursion, this does indeed give a well-defined α+ β for any
pair of ordinals. In general, this justifies recursive definitions on all ordinals.

Proposition 2.29 (Ordinal Induction)

Proof by induction works on ordinals. Let p(α) be some property of ordinals. Then we have

(∀α)((∀β)((β < α) ⇒ p(β)) ⇒ p(α)) ⇒ (∀α)p(α).

Proof: For contradiction, assume (∀α)((∀β)((β < α) ⇒ p(β)) ⇒ p(α)) but not (∀α)p(α). Then
there is some γ with ¬p(γ). The non-empty set {δ  γ : ¬p(δ)} of ordinals therefore has a least
element, say α. If β < α, then β  γ, and so p(β) holds. But then by assumption, p(α) holds. □
Note: For m,n < ω, we have m+ 0 = m, and m+ (n+ 1) = m+ n+ = (m+ n)+ = (m+ n) + 1.
This is exactly the recursive definition of integer addition, which is why we say ordinal addition
respects integer addition.

Proposition 2.30 (Noncommutativity)

Ordinal addition is not commutative.

Proof: Since 1 is a successor ordinal, ω + 1 = ω+. However, since ω is a limit ordinal, we have:

1 + ω = sup {1 + n : n < ω} = supN = ω ∕= ω+.

This means ω + 1 ∕= 1 + ω, so ordinal addition is not commutative. □

Proposition 2.31 (Addition Respects )

For any ordinal α, if β  γ, then α+ β  α+ γ.

Proof: We fix α and proceed by induction on γ. If γ = 0, then β = γ = 0, so both sides are just
α, and thus the inequality holds. Now, without loss of generality we take β < γ.

If γ = δ+ is a successor ordinal, then we have α + β  (α + δ)+. We have β  δ, so by induction
this holds. Similarly, if γ is a limit ordinal, we define α + γ to be the supremum of the set
{α+ δ : δ < γ}. Since β < γ, this set contains α+ β, and so α+ β  α+ γ as required. □
Corollary: The strict version also holds: if β < γ, then α+β < α+γ. However, we do not always
have β + α < γ + α, for example if β = 0, γ = 1, and α = ω this would give ω < ω. However, we
do have β + α  γ + α, simply by induction on α.
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Proposition 2.32 (Supremum Addition)

Let S ∕= ∅ be a set of ordinals. Then for any ordinal α, we have

α+ supS = sup {α+ β : β ∈ S} .

Proof: Let T = {α+ β : β ∈ S}. We then want α + supS = supT . For any β ∈ S, we know
α+ β  α+ supS. Then supT  α+ supS. To prove the converse, we consider two cases, based
on whether S has a greatest element.

1. If S has greatest element γ, then α+ γ is a greatest element of T . So α+ γ = supT , but as
γ = supS, indeed we have α+ supS = supT .

2. If S has no greatest element, let λ = supS. Then λ ∕= 0, since S ∕= ∅. Note that λ /∈ S, so
S ⊆ Iλ. Then λ = supS  sup Iλ = λ, so λ = sup Iλ, and so λ is a limit ordinal. Therefore
we have by definition α+ supS = α+ λ = sup {α+ γ : γ < λ}.

Now, for any γ < λ = supS, there exists β ∈ S with γ < β. Then α + γ  α + β  supT .
But then we have α+ supS  supT .

Thus in either case, we have α+ supS  supT and supT  α+ supS, so α+ supS = supT . □

Proposition 2.33 (Associativity of Ordinal Addition)

For all ordinals α,β, γ we have α+ (β + γ) = (α+ β) + γ.

Proof: We prove this by induction on γ, with α and β fixed. We consider three cases.

1. If γ = 0, then we have α+ (β + 0) = α+ β = (α+ β) + 0.

2. If γ = δ+ is a successor ordinal, then α+(β+γ) = α+(β+ δ)+ by definition. The induction
hypothesis shows that this is equal to (α+ (β + δ))+ = (α+ β) + γ.

3. If γ ∕= 0 is a limit ordinal, α+ (β + γ) = α+ sup {β + δ : δ < γ} = sup {α+ (β + δ) : δ < γ}
by the previous proposition. But then this is sup {(α+ β) + δ : δ < γ} by the induction
hypothesis, and this is simply (α+ β) + γ as required.

Therefore α+ (β + γ) = (α+ β) + γ, and so ordinal addition is associative. □
Note: The definition of ordinal addition given in 2.28 is called the inductive definition. We now
give an alternative synthetic definition, which yields the same result.

Definition 2.34 (Ordinal Addition)

Let X and Y be well-ordered sets. Then X ⊔ Y = (X × {0}) ∪ (Y × {1}) is well-ordered too,
by the ordering:

(x, i) < (y, j) ⇐⇒ one of






i = j = 0 and x < y in X

i = j = 1 and x < y in Y

i = 0 and j = 1

That is, we say that every element in X is “less” than every element in Y , and compare pairs
of elements from the same set as they are compared within that set. X⊔Y is then the disjoint
union of X and Y , or the set “X then Y ”.

Now, if X and Y have order type α and β, we let α+ β be the order type of X ⊔ Y .

Note: In the synthetic definition of ordinal addition, we let α + 1 be the order type of α ⊔ {0},
which is clearly α+.
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Note: This definition makes it easier to see various properties, like associativity (2.33), as the
well-ordered sets (X ⊔ Y )⊔Z and X ⊔ (Y ⊔Z) are order-isomorphic. Also, we have α+ β  α+ γ
whenever β  γ (2.31), since if Y is an initial segment of Z, X ⊔Y is an initial segment of X ⊔Z.

Note: We usually write the more concise α ⊔ β for “X ⊔ Y , where X is of order type α and Y is
of order type β”. More generally, we identify α and Iα.

Proposition 2.35 (Addition Well-Defined)

The definitions of ordinal addition given in 2.28 (inductive) and 2.34 (synthetic) coincide.

Proof: We write α ⊕ β for the synthetic definition, and α + β for the inductive definition. Now,
we perform induction, considering three cases based on β.

1. If β = 0, then α+ 0 = α is indeed the order type of X ⊔∅, where X has order type α.

2. If β = δ+, then α+ β = (α+ δ)+, which is the order type of (α ⊔ δ) ⊔ 1 by induction. This
is order-isomorphic to α ⊔ (δ ⊔ 1), which has order type α⊕ β as required.

3. If β ∕= 0 is a limit ordinal, then α + β = sup {α+ γ : γ < β}. By induction, this is equal to
sup {α⊕ γ : γ < β}. But α ⊕ γ is the order type of α ⊔ γ, and the supremum of the nested
set {α ⊔ γ : γ < β} is the union


γ<β α ⊔ γ, which is α ⊔ β. This has order type α ⊕ β as

required, so the definitions coincide in this case too.

Thus the definitions coincide for every ordinal, and so are equal. □
Now, we define ordinal multiplication. Again, we start with the inductive definition.

Definition 2.36 (Inductive Ordinal Multiplication)

We define α · β by recursion on β, with α fixed. α · 0 = 0 for all ordinals α. Then:

1. α · β+ = α · β + α for successor ordinals β+.

2. α · λ = sup {α · γ : γ < λ} for limit ordinals λ.

This clearly respects traditional multiplication on the natural numbers N0.

Definition 2.37 (Synthetic Ordinal Multiplication)

For well-ordered sets X and Y , we well-order the Cartesian product X × Y by:

(x, y) < (x′, y′) ⇐⇒ one of


y < y′ in Y

y = y′ and x < x′ in X

This is the lexicographic ordering on X×Y , where the second element takes precedence, with
ties broken by the first element.

We then define α · β to be the order type of α× β, or more precisely Iα × Iβ .

Corollary: It is straightforward to check that the two definitions of α · β once again coincide.

Corollary: Ordinal multiplication respects  in the same way that ordinal addition does (2.31):
we have α ·β  α · γ for all β  γ. The strict version holds too, provided that α ∕= 0. The reversed
version also holds: for all β  γ we have β · α  γ · α.

Corollary: Ordinal multiplication is also associative: α · (β · γ) = (α · β) · γ. However, ordinal
multiplication is not commutative: ω · 2 = ω + ω, but 2 · ω = sup 2N = ω.

We define ordinal exponentiation likewise, with α0 = 1, and αβ+

= αβ · α.
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Definition 2.38 (Ordinal Exponentiation)

We define αβ by recursion on β, with α fixed. α0 = 1 for all ordinals α. Then:

1. αβ+

= αβ · α for successor ordinals β+.

2. αλ = sup {αγ : γ < λ} for limit ordinals λ.

This clearly respects traditional exponentiation on the natural numbers N0.

Note: This definition sets 00 = 1. In fact, this is a natural definition, even in general! The empty
product is clearly 1, since this is the identity for multiplication. Additionally, the limit in the real
numbers of xx approaches 1 as x → 0 from above.

With this, we can construct a table of inequalities, which is useful for reference. Suppose we have
ordinals α < β, and another ordinal γ. Then, which arithmetic inequalities hold?

strict, left side non-strict, left-side strict, right side non-strict, right side

operation ◦ γ ◦ α < γ ◦ β γ ◦ α  γ ◦ β α ◦ γ < β ◦ γ α ◦ γ  β ◦ γ

addition +  (everywhere)  (everywhere) 2 + ω = 3 + ω  (everywhere)

multiplication ·  (if γ ∕= 0)  (everywhere) 2 · ω = 3 · ω  (everywhere)

exponentiation ∧  (if γ ∕= 0, 1)  (if γ ∕= 0) 2ω = 3ω  (everywhere)

In general, these inequalities tend to hold when we operate by γ on the left. This is because, for
a fixed γ, these operations are defined inductively, and so:

1. If β+ is a successor, then γ ◦ β+ = γ ◦ β ∗ γ, which is at least γ ◦ β. This means for sucessor
ordinals, the ordering is preserved.

2. If λ is a non-zero limit ordinal, then γ ◦ λ = sup {γ ◦ β : β < λ}, and so by definition γ ◦ λ is
at least γ ◦ β for all smaller β.

A similar induction shows the non-strict version on the right side.

Note: The only non-strict example which does not always hold is the one of exponentiation, in
which we see 00 = 1 > 02 = 0, even though 0 < 2. In fact, this counterexample holds even within
the natural numbers N0, without requiring ordinal arithmetic!

Corollary: Using the top left entry in the table, we may perform “ordinal subtraction” on the
left. If β  α, then there is a unique ordinal γ with β + γ = α. This does not work on the right:
there is no γ with γ + 1 = ω, even though 1  ω.
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3 Posets and Zorn’s Lemma

3.1 Partially Ordered Sets

This section will require a lot of basic definitions and examples before we see any results.

Definition 3.1 (Partial Order)

A partial order on a set X is a relation  on X which is:

1. reflexive: x  x for all x ∈ X.

2. antisymmetric: if x  y and y  x, then x = y.

3. transitive: if x  y and y  z, then x  z.

We then write x < y if x  y and x ∕= y. Note that this is irreflexive and transitive.

If  is a partial order on X, we say that X is a partially ordered set, or poset.

Note: Compare this to the definition of a total order given in 2.1. In fact, any linearly ordered
set is also a poset.

Example 3.2 (Posets)

Any linearly ordered set is a poset, but are there posets which are not linearly ordered?

1. In N, the relation a  b if a | b is a partial but not linear order. For example, 4 and 7
are incomparable: neither divide the other.

2. For any set S, the powerset ℘ (S) is a poset under the order ⊆.

3. Any subset of a poset is a poset, simply by restricting the partial order.

Definition 3.3 (Hasse Diagrams)

We can describe posets using Hasse diagrams, like this:

f

d e

b c

a

This is an order of a set X = {a, b, c, d, e, f} where the relation is given by:

a  b, a  c, b  d, c  d, c  e, d  f, e  f

and all consequences of reflexivity and transitivity from here. More generally, we join x to y
with an upward edge if y covers x, that is if x < y and there is no z with x < z < y. We then
interpret the diagram to mean x  y if x = y or there is an upward path from x to y.

Note: Not all posets can be described using Hasse diagrams. For example, in Q, the set is dense,
and so between any x < y there is some element z with x < z < y. But then we cannot draw a line
between any x and an element which covers it. However, all finite posets have Hasse diagrams.
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Example 3.4 (Hasse Diagrams)

We can draw the subsets of {0, 1} and {0, 1, 2} using Hasse diagrams.

∅

{0} {1}

{2}

∅

{0} {2}{1}

{0, 1} {1, 2}{0, 2}

{0, 1, 2}

In a poset, there need not be a coherent notion of “height”. For example, consider the original
example of a Hasse diagram, and remove the element “e”, but retain the relation d  f. Then
we are left with the following diagram:

f

e

b c

a

Here, there is no way to assign each element a “layer” such that each element covers one from
the layer directly below it.

There also need not be any connection between paths.

d

fb c

a

g

e

Here, the set is split into two, where no pair of elements from opposite parts are comparable.

Definition 3.5 (Chain, Antichain)

A subset S of a poset X is a chain if S is linearly ordered by the partial order on X.

Meanwhile, a subset S is called an antichain if no two distinct elements of S are related. That
is, for all x, y in S, if x  y then x = y.

Of course, this is the opposite of a chain, where every pair of elements is comparable.

Corollary: If X is linearly ordered, then every subset of X is a chain.

Corollary: Any subset of size 1 is both a chain and an antichain.
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Example 3.6 (Chains and Antichains)

We can write down some chains and antichains.

1. Any subset of size 1 is both a chain and an antichain. In a linearly ordered set X, these
are the only antichains, as any two elements are related.

2. Any subset of a chain or antichain is still a chain or antichain respectively.

3. In N, with a  b if a | b, the set {1, 2, 4, 8, 16 . . .} is a chain, while the set of primes is
an antichain (as no two elements divide each other).

4. In the powerset of {1, 2, 3}, the set {∅, {1} , {1, 2} , {1, 2, 3}} is a chain. Meanwhile, the
set {{1} , {2} , {3}} is an antichain.

5. In ℘ (Q), the set {(∞, x) ∩Q : x ∈ R} is an uncountable chain.

6. In our original Hasse diagram from 3.3, the sets {b, c} and {d, e} are antichains, while
the set {a, c, d, f} is a chain.

Definition 3.7 (Supremum)

Let X be a poset, with S ⊆ X and x ∈ X. Then:

1. x is an upper bound for S if y  x for all y ∈ S.

2. x is a least upper bound for S if x is an upper bound for S and x  y for all other upper
bounds of S. If this exists, then it is called the supremum and is denoted by supS.

If every subset S of a poset X has a supremum, then we say X is complete.

Note: If a set S has supremum x and supremum y, then x and y are both upper bounds, and we
must have x  y and y  x by the supremum property. Then x = y by antisymmetry. Therefore
the supremum of a set, if it exists, must be unique.

Corollary: A complete posetX has greatest element supX and least element sup∅. In particular,
this means the empty set ∅ is not complete, as it has no element.

Example 3.8 (Supremum)

If S ⊆ ℘ (X), then supS =

{A : A ∈ S}.

In R, we have sup(0, 1) = sup[0, 1] = 1.

In Q, the set

x : x2 < 2


has upper bounds (like 2), but no supremum, and so is not complete.

R is also not complete: for example R has no upper bound.

Definition 3.9 (Order-Preserving)

A map f : X → Y between posets X and Y is order-preserving if x  y =⇒ f(x)  f(y).

Note: In Definition 2.6, we defined an order-preserving map using strict equalities. In particular,
this guaranteed that any such map was injective. This is not the case for posets: indeed, any map
of the form f(x) = y0 for some constant y0 ∈ Y independent of X is order-preserving.

Corollary: If f is order-preserving and injective, then x < y =⇒ f(x) < f(y). If X is linearly
ordered, then the reverse direction is also true.
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Theorem 3.10 (Knaster-Tarski Fixed Point Theorem)

Let X be a complete poset and f : X → X be an order-preserving map. Then f must have
a fixed point x ∈ X, such that f(x) = x.

Proof: Let S = {x ∈ X : x  f(x)} and define z = supS (which exists by completeness). We
show that f(z) = z. Note that for x ∈ S, we have x  z, so x  f(x)  f(z). That means f(z) is
an upper bound for S. Since z is the least upper bound, we have z  f(z).

It then follows that f(z)  f(f(z)). But this means that f(z) ∈ S by definition of S! This means
that f(z)  z, since z is an upper bound for S. Thus by antisymmetry, we have f(z) = z, and so
z is a fixed point of an arbitrary order-preserving map. □
Note: We really did require the set X to be complete! For example, the order-preserving map
f : N → N given by f(n) = n+ 1 clearly has no fixed points.

Theorem 3.11 (Schröder-Bernstein Theorem)

Let A and B be sets. If there are injections f : A → B and g : B → A, then in fact there is
some bijection h : A → B.

Proof: We seek partitions A = P ∪Q and B = R ∪ S such that f(P ) = R and g(S) = Q. Then

h(x) =


f(x) x ∈ P

g−1(x) x ∈ Q

defines a bijection A → B. For such partitions, A \ g(B \ f(P )) = P . This is because f(P ) = R,
and B \R = S, then A \ g(S) = A \Q = P .

Define H : ℘ (A) → ℘ (A) by H(P ) = A \ g(B \ f(P )). Recall that ℘ (A) is a complete poset under
the inclusion relation, and H is order-preserving.

By Knaster-Tarski (Theorem 3.10), there is a fixed point P ⊆ A such that H(P ) = P . Then
setting Q = A \ P , R = f(P ), and S = B \R gives the required partitions. □

3.2 Zorn’s Lemma

We now prove one of the most important and famous results in set theory: Zorn’s Lemma. First,
we need an introductory definition.

Definition 3.12 (Maximal Element)

An element x in a poset X is called maximal if x  y implies x = y. Equivalently, there is no
y ∈ X with x < y.

Note: Maximal elements need not necessarily be unique! In the set {a, b, c} with the ordering
given by a  b and a  c, both b and c are maximal.

Example 3.13 (Maximal Elements)

Sets may or may not have a maximal element.

1. In the powerset ℘ (S) ordered by inclusion, the element S is maximal.

2. In N under the usual order, there is no maximal element, as n  n+ 1.

Now, we are ready to prove Zorn’s Lemma.
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Theorem 3.14 (Zorn’s Lemma)

Let X be a non-empty poset in which every chain (3.5) has an upper bound. Then X must
have a maximal element.

Proof: Assume that X has no maximal element. For each x, fix x′ ∈ X such that x < x′. Also,
for each chain C ⊆ X, let u(C) be an upper bound for C.

Let γ = γ(X) be some ordinal which does not inject into X, which is possible by Hartog’s Lemma
(Theorem 2.26). Define f : γ → X by the recursion:

f(0) = u(∅) the base case

f(α+ 1) = f(α)′ for successor ordinals

f(λ) = u({f(α) : α < λ}) for limit ordinals

Now, an induction on β with α fixed shows that α < β =⇒ f(α) < f(β). But then f is injective,
which is a contradiction! Therefore there is a maximal element.

In this definition, we used {f(α) : α < λ}, and found its upper bound. In fact, this relies on the
fact that this set is always a chain for every limit ordinal λ. □
Note: Recall that ∅ is a chain in X, and thus has an upper bound x ∈ X. Therefore X is anyway
guaranteed to be non-empty. When applying Zorn’s Lemma, we often first check that X ∕= ∅ and
then verify that non-empty chain has an bound.

Theorem 3.15 (Vector Space Basis)

Every vector space V has a basis.

Proof: Partially order the linearly independent subsets of V by inclusion. Assuming each chain
has an upper bound, we apply Zorn’s lemma and take the maximal element B ⊆ V .

Then B is a basis, that is span(v) = V . Otherwise, we could take some x in V but not the span
of B, which would make B ∪ {x} a larger linearly independent set, contradicting maximality.

We now check that each chain has an upper bound. Let X = {A ⊆ V : A is linearly independent},
partially ordered by inclusion. Let C = {Ai : i ∈ I} be some chain in X. Then the union of all the
sets is A =


i∈I Ai is an upper bound for C in ℘ (V ): we prove that it is linearly independent,

and thus that it is also an upper bound for C in X.

Assume otherwise, so that:
n

j=1

λjxj = 0

for some xi all in A with λi scalars. Since C is a chain, each xi is in some Ak. Then we can choose
some 1  ℓ  n with

n

j=1

Aij = Aik .

But Aik is linearly independent, so the λi are all zero. Therefore A is linearly independent too.
By Zorn’s Lemma, there is a maximal element B ⊆ X, which is therefore a basis. □
Corollary: Every linearly independent set B0 ⊆ V is contained in some basis of V .

Note: R is a vector space over Q. A basis of R over Q is called a Hamel basis. The real vector
space RN, the set of real-valued sequences, has a basis, but has no countable basis.

Note: Zorn’s lemma is very widely applicable. For example, the existence of maximal ideals in
rings with 1, the existence of continuous linear functionals in a normed space, the proof that every
connected graph has a spanning tree, and more all use this result.
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We now complete the proof of the model existence lemma (Theorem 1.17) from the first section on
propositional logic, in the case of an arbitrary (possibly uncountable) set of primitive propositions.

Theorem 3.16 (General Model Existence Lemma)

Let S ⊆ L. If S is consistent, then S has a model.

That is, if P is any set of primitive propositions, with S ⊆ L(P ) a consistent set, then there
is some consistent set S̄ with S ⊆ S̄ and for all t ∈ L, either t ∈ S̄ or ¬t ∈ S̄.

Proof: We seek a maximal (with regard to inclusion) consistent set S̄ containing S. Then we
complete the proof by taking an arbitrary t ∈ L and noticing that either S̄ ∪ {t} or S̄ ∪ {¬t} is
consistent: if not then S̄ ⊢ ¬t and S̄ ⊢ ¬¬t by the Deduction Theorem (1.13). Then S̄ ⊢ ⊥ by
modus ponens, which contradicts S̄ being consistent.

Now, let X = {T ⊆ L : T is consistent and S ⊆ T}, partially ordered by inclusion. Since S ∈ X,
X ∕= ∅. We now prove that every chain has an upper bound.

Let C = {Ti : i ∈ I} be a non-empty chain in X. Clearly, the union of these sets T is an upper
bound, and S ⊆ Ti, so we have S ⊆ T . It remains to show that T is consistent.

Otherwise, if T ⊢ ⊥, then there is some finite proof of this. Then there is some finite union of Ti

which proves ⊥: the ones with propositions used in the proof of ⊥. But since C is a chain, there
is some k with Tik ⊢ ⊥, but this is a contradiction. Therefore T is an upper bound in X.

But then X has a maximal element, by Zorn’s Lemma. By maximality, we have either t ∈ S̄ or
¬t ∈ S̄, so S̄ is a model of S, as required. □

Theorem 3.17 (Well-Ordering Principle)

Every set A can be well-ordered.

Proof: Let X = {(B,R) ∈ ℘ (A)× ℘ (A×A) : R is a well-ordering of B} be partially ordered by
inclusion: (B1, R1)  (B2, R2) if and only if B1 ⊆ B2 and R1 = R2 ∩ (B1 × B1): B1 is an initial
segment of B2.

Notice that (∅,∅) ∈ X, so X ∕= ∅. Now let C = {(Bi, Ri) : i ∈ I} be a non-empty chain in
X: a nested collection of well-ordered sets. Then the element-wise union is an upper bound, by
Proposition 2.18.

By Zorn’s Lemma, we thus have a maximal element (B,R) ∈ X. If B ∕= A, then for x ∈ A \B, we
can construct a new well-ordering by (B ∪ {x} , R ∪ {(b, x) : b ∈ B} ∪ {(x, x)}). That is, we take
(B,R) and add a new element x to B greater than all previous elements.

But then this is a bigger element of X, so (B,R) was not maximal. Therefore the maximal element
is such that B = A. Therefore there is some (A,R) with R a well-ordering of A. Equivalently, the
set A can be well-ordered! □
Corollary: The set of real numbers R can be well-ordered! Despite this, no well-ordering of R
has ever been explicitly constructed.

In the proof of Zorn’s Lemma (Theorem 3.14), we used a function from X → X which mapped
x → x′ ∈ {y ∈ X | x < y}. We also used a function u : {C ⊆ X : C a chain} → X, where u(C)
selects an element which is an upper bound for C. These functions are called choice functions.
Another example of such a function is used in the proof that a countable union of countable sets
is itself countable: we fix injections fn : An → N for each n.

The ability to do this is one of the most controversial disputes in mathematics, and is commonly
termed the Axiom of Choice. We now turn to study it.
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3.3 The Axiom of Choice

The Axiom of Choice is the assertion that for any set X = {Ai : i ∈ I} of nonempty sets, there is
a function f : I → ∪i∈IAi such that f(i) ∈ Ai for all i ∈ I. This is called a choice function. This is
trivial when I is finite: we can prove it by induction on the size of I. However, when I is infinite,
the existence of such a function is granted only by this axiom.

Note: This assertion is very different from the other rules for constructing sets which we have met
so far, such as the union, intersection, or powerset constructions. These are all unique constructions
which entirely specify a set, but this axiom just asserts that an object exists, without any regard
to uniqueness.

Note: As mentioned in the motivation for this section, the existence of this axiom (AC for short)
is controversial. Many people do not like the idea of asserting this, because the axiom has many
strange consequences, and even those that do often want to verify whether proofs which use AC
are in fact still valid without AC.

In fact, the seminal result of this section will be that two results we have seen before are in fact
equivalent to the Axiom of Choice, and thus equivalent to each other: Zorn’s Lemma and the
Well-Ordering Principle (Theorems 3.14 and 3.17).

Theorem 3.18 (Axiom of Choice Equivalence)

The Axiom of Choice is equivalent to Zorn’s Lemma (3.14), which is itself equivalent to the
Well-Ordering Principle (3.17). That is, each of these imply the others.

Proof: We used the Axiom of Choice in the proof of Zorn’s Lemma, so AC =⇒ ZL.

We used Zorn’s Lemma in the proof of the Well-Ordering Principle, so ZL =⇒ WP.

We now show that the Well-Ordering Principle implies the Axiom of Choice. Let X = {Ai : i ∈ I}
be a set of non-empty sets Ai indexed by elements in some set I. Define A to be the union of these
sets, so A =


i∈I Ai. Fix a well-ordering of A.

Now we may define f : I → A by f(i) → the least element of Ai. This is a choice function, so we
have WP =⇒ AC as required.

Therefore the three statements are equivalent, as required. □
Note: The rest of this chapter is not examinable.

We now consider two definitions, which seek to formalise ideas we have seen before. We use this
to prove another fixed-point theorem (like Theorem 3.10) with and without the Axiom of Choice.

Definition 3.19 (Chain-Complete)

A poset X is chain-complete if X ∕= ∅ and every non-empty chain has a supremum.

Corollary: Every complete poset (Definition 3.7) and every finite poset is chain-complete.

Corollary: If X is a poset, then {C ⊆ X : C a chain} ordered by inclusion is chain-complete.

Definition 3.20 (Inflationary)

A function f : X → X on a poset X is inflationary if x  f(x) for all x ∈ X.

We may now use these two definitions to state and prove a fixed-point theorem.
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Theorem 3.21 (Bourbaki-Witt Fixed Point Theorem)

If X is a chain-complete poset and f : X → X is inflationary, then f has a fixed point.

Proof: (With AC) We may use Zorn’s Lemma to claim that X has a maximal element x. Then
x  f(x) by f being inflationary, but x  f(x) by maximality, so x = f(x). □
Proof: (Without AC) Assume f has no fixed point. Fix x0 ∈ X. Let γ = γ(X) be an ordinal
which does not inject into X, by Hartog’s Lemma (Theorem 2.26). Define g : γ → X by recursion:

g(0) = x0

g(α+ 1) = f(g(α))

g(λ) = sup {g(α) : α < λ}

for successor and nonzero limit ordinals α+ 1 and λ.

By induction, for α < β we have that g(λ) is well-defined and g(α) < g(β). But then g is injective,
which is a contradiction. □
Note: The AC-free proof is very similar to the proof of the Knaster-Tarski Fixed Point Theorem
(Theorem 3.10). In fact, this theorem is often called the choice-free part of Zorn’s Lemma.

Theorem 3.22 (AC + BW ⇒ ZL)

The Axiom of Choice, along with Bourbaki-Witt, together imply Zorn’s Lemma.

Proof: Let X be a poset in which every chain has an upper bound.

If X is chain complete, fix a choice function g : ℘ (X)\{∅} → X where g(Y ) ∈ Y for all non-empty
Y ⊆ X. That is, g maps non-empty subsets of X to elements of X contained within them.

Suppose that X has no maximal element. Then define f : X → X by f(x) = g({y ∈ X : x < y}).
Then for all x, we have x < f(x) for all X, so this contradicts Bourbaki-Witt.

What if X is not chain-complete? Then let Y = {C ⊆ X : C a chain}. This is chain-complete, so
it has a maximal element, say C. Let x be an upper bound for C.

If x is not maximal, pick y ∈ X with x < y. Then C ∪ {y} is a chain with y /∈ C. But this means
C was not maximal in Y , so in fact x is maximal in X. □
Note: In fact, we proved the Hausdorff Maximality Principle, which states that every poset has a
maximal chain. This is also equivalent to the Axiom of Choice!
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4 First-Order Predicate Logic

Now, we return from set theory to logic once more. Our original model of basic propositional logic
was easy to work with, but it was difficult to model actual mathematical theories, let alone the rich
variety of statements present in modern mathematics. We aim now to take another step towards
being able to formalise as much as we can.

To this end, we replace the primitive propositions of propositional logic with actual mathematical
statements. For example, we have statements like:

“m(x, m(y, z)) = m(m(x, y), z)” (associativity of group multiplication)

or in the language of posets, statements like x  y.

But these are meaningless right now! We need variables like x, y, and z, and we also need operator
symbols, like the binary symbol m which denotes multiplication, or the unary symbol i which
denotes the identity, or even “nullary symbols” which operate on zero variables and are thus just
constants. Will our statements then have meaning?

No! We need to have predicate statements, like the binary predicate  or =. This is something
with a truth value: yes, m(x, y) operates on two arguments, but it has no truth value.

We will then combine statements built in this way into formulae, which finally mean something:
they are actual declarations of things which can be true! We can formalise associativity as:

“(∀x)(∀y)(∀z)(m(x, m(y, z)) = m(m(x, y), z))”.

In fact, we can formalise all manner of other things, like transitivity:

“(∀x)(∀y)(∀z)(((x  y) ∧ (y  z)) ⇒ (x  z))”.

The valuations we have described so far (Definition 1.2) will become structures. These are sets A
together with functions pA : An → {0, 1} for any formula p, with n the number of variables in p.

Similarly, if S is a set of formulae, we regard the notion of a definition-propositional-model (Defi-
nition 1.8) for S, as well as the notions of semantic and syntactic entailment from the chapter on
Propositional Logic, all in the language of First-Order Predicate Logic.

4.1 Languages

Now, having introduced a heuristic idea of logic, we begin to consider it formally.

Definition 4.1 (Language)

A language L in first-order predicate logic is specified by a disjoint pair of sets:

Ω the set of operation symbols, and

Π the set of predicate symbols,

as well as an arity function α : Ω ∪ Π → N0. This function represents how many arguments
each operation or predicate takes: for example, α() = 2. Then L = L(Ω,Π) consists of:

1. The set of variables is a countably infinite set disjoint from Ω and Π. Each formula only
uses finitely many variables: we use x1, x2, . . . to denote them, or often x, y, and z.

2. The set of Ω-terms (or simply terms) is defined inductively: every variable is a term,
and if ω ∈ Ω has arity n = α(ω), then ωt1 . . . tn is a term for all terms t1, . . . , tn.

We now have terms, but can’t do much with them. This is where formulae come in.
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Definition 4.2 (Atomic Formula)

If s and t are terms, then (s = t) is an atomic formula.

If ϕ ∈ Π has arity n = α(ϕ), and t1, . . . , tn are all terms, then ϕt1t2 . . . tn is an atomic formula.

Nothing else is an atomic formula.

Example 4.3 (Language of Groups and Posets)

For example, we take the language of groups, with Ω = {m, i, e} and Π = ∅. These are
the symbols for multiplication, inverses, and the identity: binary, unary, and nullary symbols
respectively. That is, they have arities 2, 1, and 0.

Then we can write down some terms:

1. mxmyz is a term, representing the multiplication x(yz) = m(x,m(y, z)).

2. mmxyz is a term representing (xy)z.

3. imxix is a term representing (xx−1)−1.

4. mee is a term representing e2.

However, mxyz, xmyy, and ex, among others, are not terms!

Then (mxmyz = mmxyz) is an atomic formula, representing associativity of multiplication
in groups. Similarly, (mxix = e) is the statement of left-inverses.

Now consider the language of posets. Now, we have Ω = ∅ and Π = {}, with α() = 2.
Then the only terms are the variables, since Ω is empty, and some atomic formulae include
(x1 = x2) and (x1  x2)

In fact, this last atomic formula should be  x1x2, but we follow conventional notation when
we know what they represent.

Note: We don’t need brackets for terms: everything is uniquely defined by the order of symbols
and the arities of everything in Ω and Π.

These are not the only type of formulae: we now introduce the rest.

Definition 4.4 (Formula)

The set of formulae is defined as follows:

1. Atomic formulae are formulae.

2. ⊥ is a formulae.

3. If p and q are formulae, then so is (p ⇒ q).

4. If p is a formula and x is a free variable (to be defined) in p, then (∀x)p is a formula.
This is to be read as “for all x, we have p”.

Nothing else is a formula. We also introduce several abbreviations. ¬x is short for (x ⇒ ⊥),
⊤ = ¬⊥, and so on for ∧, ∨ as in propositional logic. We also use ⇔ for (p ⇒ q) ∧ (q ⇒ p).

We also abbreviate the formula ¬(∀x)¬p as (∃x)p.

Really, a formula is a finite string from Ω ∪ Π, variables, and the symbols {⊥,⇒, (, )}, plus other
symbols introduced as abbreviations. An occurrence of a variable can be either free or bound,
defined by induction on the language.
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Definition 4.5 (Free and Bound Variables, Sentence)

Any occurrence of any variable in an atomic formula is free.

If p and q are formulae, then any occurrence of a variable in p or q remains of the same type
in the formula (p ⇒ q).

If p is a formula, and a variable x has at least one free ocurrence in p, then every free occurrence
of x in p becomes bound in the formula (∀x)p. Everything else is unchanged.

We let FV(p) be the set of free variables in a formula p. These are variables with at least one
free occurrence in p.

A formula with no free variables is called a sentence.

Example 4.6 (Free and Bound Variables)

Take the language of groups again, from the previous example.

Consider the formula (mxix = e) ⇒ (mixx = e). Clearly, x is free in either atomic formula
on the left or right, so remains free here.

Now, consider (∀x)(mxx = e) ⇒ (∀x)(∀y)(mxy = myx), which is the statement that groups
where all elements have order at most 2 are abelian. The occurrences of x and y in mxx = e
and mxy = myx are free originally, but then by the rule they become bound. The occurrences
in (∀x) and (∀y) are thought of as being neither bound nor free, so there are no free variables
in this formula.

Definition 4.7 (Structure)

A structure in a first-order language L = L(Ω,Π), sometimes known as an L-structure, is
a non-empty set A together with functions ωA : An → A, where ω ∈ Ω and n = α(ω),
and a subset ϕA ⊆ An for each ϕ ∈ Π. We identify this subset with its indicator function
ϕA : An → {0, 1}, where again n = α(ϕ).

Note: If α(ω) = 0, then ω is called a constant, since it is a function ωA : {ε} → A, which can be
interpreted as an element ωA ∈ A.

Note: In fact, we do not allow ∅ as a structure, excluding it here as a simplifying assumption.
See Remark 4.24 for more details as to why allowing ∅ as a structure causes problems.

In the language of groups, an L-structure is therefore a set A with 3 functions mA : A × A → A,
iA : A → A, and eA ∈ A. This is not a group yet! Similarly, in the language of posets, a structure
is therefore a non-empty set with a subset A⊆ A×A. Again, this is not yet a poset!

Now, let A be a structure on the language of groups, and let p be the atomic formula (mxix = e).
We want to interpret p in the structure, and ask “is p satisfied in A?”

Intuitively, we should have pA = {a ∈ A : mA(a, iA(a)) = eA}. That is, pA is the set of elements
of A for which the atomic formula is “true”. Then, we say p is satisfied in A if pA = A.

If q is the formula (∀x)p, what should qA be? This should be a function from A0 = {ε} to {0, 1},
and we say qA is “true” (1) if pA = A and “false” (0) otherwise.

This holds for all sentences: one simply substitutes the basic symbols in the language L for their
interpretations in the structure as functions.

We now formalise this definition of interpretation for first-order languages: assigning sentences the
values of “true” and “false”.
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Definition 4.8 (Interpretation)

Let L = L(Ω,Π) be a first-order language, and A an L-structure.

Given a term t ∈ L and a formula p in L, both with free variables contained in {x1, . . . , xn},
we define interpretations tA : An → A of t and pA : An → {0, 1} (or equivalently, pA ⊆ An).

These interpretations are fixed by induction on L.

1. If t = xi for some 1  i  n, then tA(a1, . . . , an) = ai.

2. If t = ωt1 . . . tm for some ω ∈ Ω and m = α(Ω), and t1, . . . , tm are terms, then we define
tA(a1, . . . , an) = ωA((t1)A(a1, . . . , an), . . . , (tm)A(a1, . . . , an))

If α(ω) = n and t = ωx1 . . . xn, then tA = ωA.

1. If p is the formula (u = v), where u and v are terms, then we define pA to be the subset
pA = {(a1, . . . , an) ∈ An : uA(a1, . . . , an) = vA(a1, . . . , an)}, or its indicator function.

2. If p is ϕt1 . . . tm where ϕ ∈ Π with α(ϕ) = m, and t1, . . . , tm are terms, then we define
pA(a1, . . . , an) = ϕA((t1)A(a1, . . . , an), . . . , (tm)A(a1, . . . , an)), or the subset where this
function takes the value 1.

That defines interpretations of terms and atomic formulae. What about other formulae?

1. ⊥A : An → {0, 1} is the constant function always equal to 0, or equivalently ∅.

2. If p is the formula (q ⇒ r), then pA = (An\qA)∪rA. Equivalently, viewed as a function,
it takes value 0 when qA = 1 and rA = 0 on the same input, or value 1 otherwise.

3. If p is the formula (∀xn+1)q, where FV(q) ⊆ {x1, . . . , xn}, then we can define the set
pA = {(a1, . . . , an) ∈ An : qA(a1, . . . , an) = 1 for all an+1 ∈ A}.

All of these definitions are intuitively obvious, but difficult to formalise!

4.2 Theories and Models

Now, having formalised interpretation, we consider the truth values of formulae with respect to a
given L-structure A. When is some formula p true in A?

Definition 4.9 (Model)

If L = L(Ω,Π) is a first order language, and A is an L-structure, then we say that a formula
p ∈ L “holds in A”, or “p is satisfied in A”, or “p is true in A”, or “A is a model of p”, if
pA = An. Equivalently, if pA : An → {0, 1} is the constant function 1, where n = #FV(p).

Corollary: If p is a sentence, then pA : A0 → {0, 1}, or equivalently pA ∈ {0, 1}. So a sentence
pA holds in A if and only if pA = 1.

Definition 4.10 (Theory)

A theory in L is a set of sentences in L.

A model of a theory T is an L-structure A in which every sentence t ∈ T is satisfied.

Now, it’s time to formalise some existing structures we know and love into first-order theories. To
do this, we must write down sets Ω and Π, define the arities of all of their elements, and then write
down sentences in the language L = L(Ω,Π).
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Example 4.11 (Group Theory)

The language of group theory is Ω = {m, i, e} with arities α(m) = 2, α(i) = 1, α(e) = 0, and
Π = ∅. We now define a theory of groups.

T = {(∀x)(∀y)(∀z)(mmxyz = mxmyz),

(∀x)((mex = x) ∧ (mxe = x)),

(∀x)((mixx = e) ∧ (mxix = e))}

These are the sentences representing associativity, identity, and inverses respectively. Every
model of T is a group, and every group is a model of T . So we have successfully axiomatised
groups as a first-order theory!

Example 4.12 (Posets)

The language of posets is Ω = ∅ and Π = {} with arity α() = 2. A theory of posets is:

T = {(∀x)(x  x),

(∀x)(∀y)(((x  y) ∧ (y  x)) ⇒ (x = y)),

(∀x)(∀y)(∀z)(((x  y) ∧ (y  z)) ⇒ (x  z))}

These are the sentences representing reflexivity, antisymmetry, and transitivity respectively.
Every model of T is a poset, and every poset is a model of T .

An important difference with these examples of group theory and posets is that the latter theory
required the use of the implication symbol ⇒. Of course, we did use ⇒ implicitly in the example
of group theory, since ∧ is shorthand for an implication, but this can be avoided by splitting the
second and third sentences into two sentences each.

Note: Theories which can be formalised in first-order logic without using the ⇒ symbol are called
algebraic theories. The theory of groups is thus algebraic.

Example 4.13 (Rings and Fields)

We have Ω = {+,×,−, 0, 1} with arities 2, 2, 1, 0, and 0 respectively, and Π = ∅. Then

T = {(∀x)(∀y)(∀z)(((x+ y) + z) = (x+ (y + z))),

(∀x)(∀y)(x+ y = y + x),

(∀x)(x+ 0 = x),

(∀x)(x+ (−x) = 0),

(∀x)(∀y)(∀z)(((x× y)× z) = (x× (y × z))),

(∀x)(∀y)(∀z)(x× (y + z) = x× y + x× z),

(∀x)(∀y)(∀z)((x+ y)× z = x× z + y × z),

(∀x)(1× x = x),

(∀x)(x× 1 = x)}

is a theory of rings. To extend this to fields, we can take the same Ω and Π and define:

T ′ = T ∪ {(x× y = y × x), ¬(0 = 1), (∀x)(¬(x = 0) ⇒ (∃y)(x× y = 1))}

to add commutativity of multiplication, zero and one distinct, and multiplicative inverses.

Note: This is not an algebraic theory! We really do require implication here.
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Example 4.14 (Graphs)

We have Ω = ∅ and Π = {∼} with arity 2 (the connectedness relation). The theory of graphs
is then axiomatised by T = {(∀x)(∼ xx), (∀x)(∀y)(∼ xy ⇒ ∼ yx)}. That is, connectedness
is a reflexive and symmetric relation.

Finally, we show that propositional logic, from §1.1, is a first-order theory. In fact, we show that
it is a special case of first-order predicate logic!

Proposition 4.15 (Propositional is Predicate)

Propositional logic is a special case of first-order predicate logic.

Proof: We take a system of propositional logic and attempt to axiomatise it in the formal system
of first-order predicate logic.

Let P be a set of primitive propositions. Define Ω = ∅, and Π = P , with α(p) = 0 for all p ∈ P .
That is, every proposition is a predicate with arity 0, and thus each p ∈ P is an atomic formula in
the language L = L(Ω,Π).

Now, each formula t ∈ L(P ) (Definition 1.1) is a formula in L! An L-structure is a set A with
associated functions pA : A0 → {0, 1} with p ∈ P . That is, pA ∈ {0, 1} for all p ∈ P .

But this yields a function v : P → {0, 1}, with v(p) = pA. This is just a valuation!

For every t ∈ L(P ), we have tA ∈ {0, 1} as defined earlier. So we have a natural extension of v to
L(P ), with v(t) matching the definition of a valuation given in Definition 1.2.

So for S ⊆ L(P ), a model of S in the sense of Definition 4.9 is an L-structure A together with a
function v : p → {0, 1} such that for all p ∈ S, pA = 1, that is v(p) = 1.

But this is the same as the notion of a model from Definition 1.8, so propositional logic really can
be axiomatised in first-order predicate logic! □

Definition 4.16 (Basic Semantic Entailment)

Let L = L(Ω,Π) be a first-order language, and let S be a theory in L with t a sentence in L.

We say that S semantically entails t if t is satisfied in every model of S, and write S ⊨ t.

Example 4.17 (Semantic Entailment)

Let T be the theory of fields, from Example 4.13. Let p be the formula ¬(x = 0), and let t
be the formula (∃y)(xy = 1). Then define S = T ∪ {p}.

Intuitively, it should be the case that S ⊨ t. That is, “if x is not 0, then it has a multiplicative
inverse” really is true in the actual study of fields.

But in fact, we cannot do this, since there is no model of S: there is no structure that assigns
a value to p.

If F is a field, then pF = F \ {0} ∕= F . But if a ∈ F and pF (a) = 1 (that is, a ∈ F is not 0),
then tF (a) = 1. So there should be some notion of entailment which uses this.

In a sense, our original definition of semantic entailment seems lacking. We can’t have a model
which represents implication in the traditional sense. In fact, any formula which has one or more
free variables (that is, any formula which is not a sentence) has no “truth value”, and therefore
any set including it cannot even be modelled.
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Definition 4.18 (Semantic Entailment)

Let S be a set of formulae in a first-order language L, and let t ∈ L be a formula. Introduce
a new “constant” (that is, a nullary operation symbol) for each free variable which occurs in
S ∪ {t}. This creates a new language L′.

For u ∈ S ∪ {t}, let u′ be a formula in the new language L′, obtained from u by replacing
each free occurrence of a variable in u with the corresponding constant.

Then in L′, we let S′ = {s′ : s ∈ S}. Then, we say S semantically entails t, and write S ⊨ t, if
S′ ⊨ t′. This really does use the definition of semantic entailment we used above, since there
are (by construction) no free variables in S′, and so we can have a model of S′.

This motivates many of the familiar definitions from §1.1, and some unfamiliar ones which basic
propositional logic is insufficient to represent.

Definition 4.19 (Tautology)

A formula t in a first-order language L is a tautology if ∅ ⊨ t. Equivalently, tautologies are
formulae t which are true in every L-structure. We write ⊨ t.

Definition 4.20 (Replacement)

Let p be a formula in a language L, with x ∈ FV(p). If t is a term in L, no variable of which
occurs bound in p, then the replacement p[t/x] is the formula obtained from p by replacing
each free occurrence of x in p by t.

Example 4.21 (Replacement in Group Theory)

Let p be the formula (∀y)(mmxyx = mmyxy) in the language of groups. In fact, this is the
claim that xyx = yxy for all y, and is a property of x, since x is the unique free variable in p.

Now, we compute some replacements.

1. If t = mzz, then p[t/x] is (∀y)(mmmzzymzz = mmymzzy).

2. If t = mxx, then p[t/x] is (∀y)(mmmxxymxx = mmymxxy).

3. If t = myy, then p[t/x] is not defined: y is a variable of t which occurs bound in p.

4.3 Syntactic Entailment

Much like in the world of propositional logic, we may model formal syntactic proofs in first-order
predicate logic. Previously in §1.3, we axiomatised propositional logic with three main axioms.
Now, we do the same for first-order predicate logic. The seven axioms are:

1. For formulae p, q ∈ L, p ⇒ (q ⇒ p).

2. For formulae p, q, r ∈ L, p ⇒ (q ⇒ r) ⇒ ((p ⇒ q) ⇒ (p ⇒ r)).

3. For formulae p ∈ L, ¬¬p ⇒ p.

4. (∀x)(x = x).

5. (∀x)(∀y)((x = y) ⇒ (p ⇒ p[y/x])).

6. (∀x)(p) ⇒ p[t/x].

7. (∀x)(p ⇒ q) ⇒ (p ⇒ (∀x)q).
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The first three of these are copied wholesale from propositional logic. The next four are new rules
about how relations, quantifiers, and substitution work.

4. (∀x)(x = x) represents the reflexivity of equality.

5. (∀x)(∀y)((x = y) ⇒ (p ⇒ p[y/x])) states that if p holds for x, and x = y, then p holds for y.

6. (∀x)(p) ⇒ p[t/x] states that if p holds for all x, then in particular it holds for t.

7. (∀x)(p ⇒ q) ⇒ (p ⇒ (∀x)q) defines transferability of quantification.

As before, all of the axioms are tautologies. However, we now have two rules of deduction!

Definition 4.22 (Deduction Rules)

From p and (p ⇒ q), we may deduce q. This is called modus ponens, as in Definition 1.9.

If x ∈ FV(p), then from p we may deduce (∀x)(p), provided that x does not occur as a free
variable in any premise used in the proof of p. This is called generalisation.

In proofs, we write (MP) and (Gen) to represent these rules of deduction.

Definition 4.23 (Proof)

Let S be a set of formulae in a language L, and let p be a formula in L. A proof of p from S
is a finite sequence t1, . . . , tk of formulae in L, such that tn = p, and for every i, either:

1. ti is one of the seven axioms of first-order predicate logic, or

2. ti is a premise (that is, ti ∈ S), or

3. ti follows by modus ponens: there are j, k < i with tk = (tj ⇒ ti), or

4. ti follows by generalisation: there is j < i with ti = (∀x)(tj), and x ∈ FV(tj), where x
is not a free variable in any premise tk with k  j.

If there is such a proof of p from S, then we say that S proves p, and write S ⊢ t. Alternatively,
we say that S syntactically entails t (as opposed to semantically, per Definition 4.18).

If S is a theory in L and p ∈ L is a sentence, then if S ⊢ p we say that p is a theorem of S.

Compare this definition to the one given in the first chapter (1.10). There are more axioms to
choose from, and we may use generalisation, but otherwise the definitions are identical.

Remark 4.24 (Why Exclude ∅?)

In our definition of a structure (Definition 4.7), we insisted that the set A was non-empty. In
fact, our notion of proof would cause problems if we were to allow ∅ as a valid structure.

Suppose ∅ was an L-structure. Then (∀x)(¬(x = x)) is satisfied in ∅, but ⊥ is not. Thus we
have {(∀x)(¬(x = x))} ∕⊨ ⊥, since there is an L-structure in which the former is true but the
latter is not. However, {(∀x)(¬(x = x))} ⊢ ⊥, as shown by the abridged proof below:

1. ¬(x = x) (MP on premise and A6)

2. (∀x)(x = x) ⇒ (x = x) (A6, substituting x for x in x = x)

3. (x = x) (MP on A4 and previous line)

which proves ⊥ by modus ponens. Thus allowing ∅ as an L-structure breaks completeness.

This allows us to write down what a proof in first-order predicate logic looks like!
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Example 4.25 (Proof of Symmetry)

We wish to prove that the equality relation is symmetric: that is, if x = y, then y = x. We
formalise this as {(x = y)} ⊢ (y = x).

1. (∀x)(∀y)((x = y) ⇒ ((x = z) ⇒ (y = z))) (A5)

2. (∀x)(∀y)((x = y) ⇒ ((x = z) ⇒ (y = z))) ⇒ (∀y)((x = y) ⇒ ((x = z) ⇒ (y = z))) (A6)

3. (∀y)((x = y) ⇒ ((x = z) ⇒ (y = z))) (MP)

4. (∀y)((x = y) ⇒ ((x = z) ⇒ (y = z))) ⇒ ((x = y) ⇒ ((x = z) ⇒ (y = z))) (A6)

5. (x = y) ⇒ ((x = z) ⇒ (y = z)) (MP)

6. x = y (premise)

7. (x = z) ⇒ (y = z) (MP)

8. (∀z)((x = z) ⇒ (y = z)) (Gen)

9. (∀z)((x = z) ⇒ (y = z)) ⇒ ((x = x) ⇒ (y = x)) (A6)

10. (x = x) ⇒ (y = x) (MP)

11. (∀x)(x = x) ⇒ (x = x) (A6)

12. (∀x)(x = x) (A4)

13. x = x (MP)

14. y = x (MP)

This proof witnesses {(x = y)} ⊢ (y = x), as expected.

Note: In a sense, Axiom 6 is the opposite of generalisation. The latter states that if we can prove
a statement p for a free variable x without using x in the proof, then it must be true for all x. This
makes sense, since the same proof works no matter the value of x. The former states the opposite:
if p is true for all x, then in particular it is true for any specific x you might care to name.

Our target for most of the rest of this chapter is to rebuild as many of the results we proved for
propositional logic into the new system of first-order logic.

Now, we can extend one of the most important results from the first chapter to first-order predicate
logic. This was the (Propositional) Deduction Theorem (1.13).

Theorem 4.26 (Deduction Theorem)

Let S be a set of formulae in a first-order language L, and let p and q be formulae in L. Then
S ⊢ (p ⇒ q) if and only if S ∪ {p} ⊢ q.

Proof: Assume S ⊢ (p ⇒ q). Then we can write down a proof of (p ⇒ q) from S. Now, we can
simply add p (premise) and q (MP) to obtain a proof of q from S ∪ {p} as desired.

Now suppose that (S ∪{p}) ⊢ q, and let t1 . . . tn be a proof of q witnessing this. Then S ⊢ (p ⇒ ti)
for all i, which we demonstrate by induction. In the case of i = n, this will show S ⊢ (p ⇒ q).

In particular, the induction hypothesis at step i is that “for all j < i, we know that S ⊢ (p ⇒ tj),
in such a way that if a variable x does not occur free in any premise in the proof t1, . . . , tj of tj
from S ∪ {p}, then x does not occur free in any premise used in the proof of (p ⇒ tj) from S.”

This augmented hypothesis is constructed to ensure that generalisation works. If we had instead
just supposed that S ⊢ (p ⇒ tj) for all j < i, this is sometimes not sufficient to continue the proof!

Now, we consider four possible cases, based on the form the new line ti takes at step i.
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If ti is an axiom or ti ∈ S, then we can write down the proof that (p ⇒ ti) in the same way as the
original Deduction Theorem.

1. ti (premise or axiom)

2. ti ⇒ (p ⇒ ti) (A1)

3. p ⇒ ti (MP)

The same goes for the case ti = p, which yields the five-line proof of (p ⇒ p) from Example 1.12.

Likewise, if ti follows by modus ponens, then by the induction hypothesis, we can write down
proofs of (p ⇒ tj) and (p ⇒ (tj ⇒ ti)). We can add the usual three lines to prove (p ⇒ ti). This
uses no new free variables and so satisfies our induction condition.

1. (p ⇒ (tj ⇒ ti)) ⇒ ((p ⇒ tj) ⇒ (p ⇒ ti)) (A2)

2. (p ⇒ tj) ⇒ (p ⇒ ti) (MP)

3. p ⇒ ti (MP)

The last case is when ti = (∀x)tj follows by generalisation from a previous line tj , where x ∈ FV(tj)
does not occur free in any of the premises in t1, . . . , tj . In fact, this splits into two further cases.

If x does not occur free in p, then our job is easy: we can append the three lines:

1. (∀x)(p ⇒ tj) (Gen)

2. (∀x)(p ⇒ tj) ⇒ (p ⇒ (∀x)tj) (A7)

3. p ⇒ (∀x)tj (MP)

This obtains a proof of (p ⇒ ti). If x does occur free in p, then our job is slightly harder. However,
notice that p is not among t1, . . . , tj by the induction hypothesis, so in fact we have a proof of tj
from S alone. This means we can append the three lines:

1. (∀x)tj (Gen)

2. (∀x)tj ⇒ (p ⇒ (∀x)tj) (A1)

3. p ⇒ (∀x)tj (MP)

This also obtains a proof of (p ⇒ ti). Neither of the two extensions of our proofs have used x as a
free variable in any further premise, so indeed the induction hypothesis is satisfied. In particular,
this means (p ⇒ ti) for all i, including the final line: (p ⇒ q) as required. □
Our aim now is to prove the Completeness Theorem (1.19) but for first-order logic. In particular,
we want to show that the syntactic and semantic entailment symbols ⊢ and ⊨ coincide. As in the
first chapter, this splits into two theorems for the two directions: the Soundness Theorem (1.14)
and the Adequacy Theorem (1.18).

Theorem 4.27 (Soundness Theorem)

Let S be a set of formulae in a first-order language L, and let p be a formula in L. Then if
S ⊢ p, we must have S ⊨ p: the proof structure is sound, and does not prove any semantically
incorrect propositions.

Proof: We use induction on the length of a proof of p from S. In the case p = (∀x)q, there is a
subset S′ ⊆ S where x does not occur free in S′, and also S′ ⊢ q. By induction, S′ ⊨ q.

Since x does not occur free in S′, we have S′ ⊨ (∀x)q, and so S ⊨ p. □
We now reconstruct the Model Existence Lemma. This was originally Theorem 1.17, and in the
chapter on posets we proved a more general case as Theorem 3.16.
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Theorem 4.28 (Model Existence Lemma)

Let S be a consistent theory in a first order language L = L(Ω,Π): that is, S ∕⊢ ⊥. Then S
has a model (as defined in 4.9).

Note: The proof of this theorem is non-examinable.

Proof: The key idea is to build a model A from the language L itself. To begin with, we let A be
the set of closed terms in L: terms with no variables.

We turn this into a structure in the obvious way, and deal with issues as they come up. Firstly, if
we have an operation with arity n, and a list of n terms, then we can interpret this in the structure
as simply the combination of their terms: mAxy = mxy.

This is sometimes not a model! For example, if T is the theory of fields, then T ⊢ (0 + 1) = 1, but
in A, these are two different terms. However, we can solve this by defining an equivalence relation
on A, whereby s ∼ t if and only if T ⊢ (s = t). We then consider A to be A/ ∼.

This still doesn’t solve all our issues. There are sentences p such that T proves neither p nor ¬p,
and so by definition T is not complete, as in 1.17. We solve this in the same way: given a consistent
theory S, there exists some S̄ ⊇ S which is complete.

However, we are still not done! Consider the theory of fields T in which 2 has a square root:
that is, the theory of fields and the sentence (∀x)((x · x = 1 + 1) ⇒ ⊥) ⇒ ⊥, or more concisely,
(∃x)(x · x = 1 + 1). There is no closed term t such that T ⊢ (t · t = 1 + 1). The problem is that
T lacks a witness for (∃x)p. We solve this by adding a witness: a new constant c to L and a new
sentence to T to obtain T ′ = T ∪ {p[c/x]}.

Now, we formalise this. We start with four observations:

1. If S is a consistent theory and p is a sentence, then either S ∪ p or S ∪ {¬p} is consistent. If
not, by the Deduction Theorem (4.26), S ⊢ ¬p and S ⊢ ¬¬p, but then S ⊢ ⊥, a contradiction.

2. By Zorn’s Lemma, there is therefore a maximal consistent theory S̄ which contains S such
that for every sentence p, either p ∈ S̄ or ¬p ∈ S̄.

3. Suppose that S ⊢ (∃x)p, where p is a formula with exactly one free variable x. If there is no
witness, we add a new constant (nullary operator) to L, and claim that the set S ∪ {p[c/x]}
is consistent. If not, the Deduction Theorem yields a proof witnessing S ⊢ ¬p[c/x]. But c
does not appear in S, which means S ⊢ ¬p. By generalisation (4.22), S ⊢ (∀x)¬p, but this is
a contradiction, since S ⊢ (∃x)p.

4. We can do this for every theorem of S of the form (∃x)p, to obtain a new language, which
we write as L̄ = L(Ω ∪ C,Π). Here, C is a set of new constants disjoint from Ω and Π. We
also obtain a new consistent theory S̄ with S ⊆ S̄ containing witnesses for S: for any such
theorem in S, there is a closed term in L̄ with S̄ ⊢ p[t/x] .

We now repeat the procedure in these observations. We start with a consistent theory S0 = S in
the language L0 = L(Ω,Π), and define by induction a series of theories S0 ⊆ S1 ⊆ T1 ⊆ S2 ⊆ . . .
and new languages Ln = L(Ω ∪ C1 ∪ · · · ∪ Cn,Π), with all n+ 2 sets pairwise disjoint.

For all n, Sn is a complete and consistent theory in Ln−1, and Tn is a consistent theory in Ln

with witnesses for each theorem in Sn of the form (∃x)p. We set L∗ and S∗ to be the union of
the Ln and Sn respectively: it is easy to check that S∗ is a consistent theory in L∗, contains S, is
complete, and has witnesses. Therefore, without loss of generality, take S∗ = S and L∗ = L.

We let A be the set of equivalence classes of closed terms in L, where we say that two closed terms
s and t are equivalent if and only if S ⊢ (s = t). We make A an L-structure in the obvious way:

ωA([t1], . . . , [tn]) = [ωt1 . . . tn] where ω ∈ Ω with α(ω) = n, and t1, . . . , tn are closed terms.

We then set ϕA([t1], . . . , [tn]) = 1 if and only if S ⊢ ϕt1 . . . tn.
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We prove by induction on the terms of the language: if S is a term with variables in {x1, . . . , xn},
then we let sA([t1], . . . , [tn]) be the equivalence class of s[t1/x1, . . . , tn/xn]. As a result, if S is a
closed term, then sA is the equivalence class of s.

Similarly, for any formula p with free variables FV(p) ⊆ {x1, . . . , xn}, we have:

pA([t1], . . . , [tn]) = 1 ⇐⇒ S ⊢ p[t1/x1, . . . , tn/xn].

In particular, if p ∈ S, then S ⊢ p, so pA = 1. But this is exactly what we wanted! The A which
we have constructed is an L-structure such that if p ∈ S, then pA = 1. This is therefore a model
of S, which is what we set out to find. □

Theorem 4.29 (Adequacy Theorem)

Let S be a set of formulae in a first-order language L, and let p be a formula in L. If S ⊨ p,
then in fact S ⊢ p. That is, if S semantically entails p, then there is a proof witnessing that
S also syntactically entails p.

Note: The proof of this theorem is also non-examinable.

Proof: Take S to be a theory, and p a sentence. As in the definition of semantic entailment (4.18),
we take S′ ⊨ p′. If we can deduce that S′ ⊢ p′, then it follows that S ⊢ p.

Since S ⊨ p, we have S ∪ {¬p} ⊨ ⊥. By the Model Existence Lemma (4.28), S ∪ {¬p} ⊢ ⊥. Also,
by the Deduction Theorem (4.26), we have S ⊢ ¬¬p. Putting these together yields a proof of p,
using Axiom 3. □
Like in §1.3, we can combine two of results we have just proved. The Soundness Theorem and the
Adequacy Theorem (originally 1.14 and 1.18, now 4.27 and 4.29) combine to make the Completeness
Theorem (originally 1.19, now 4.30).

Theorem 4.30 (Gödel’s Completeness Theorem For First-Order Logic)

Let S be a set of formulae in a first-order language L, and let p be a formula in L. Then the
notions of semantic and syntactic entailment coincide: S ⊨ p if and only if S ⊢ p.

Proof: Obvious by the Soundness Theorem (4.27) and the Adequacy Theorem (4.29). □

Theorem 4.31 (Compactness Theorem)

Let S be a first-order theory. If every finite subset of S has a model, then S has a model.

Proof: If S ⊨ ⊥, then S ⊢ ⊥. But then we can write down a proof of ⊥ from S. Since this proof
is finite, there is some finite S′ ⊆ S with S′ ⊢ ⊥. But then S′ ⊨ ⊥, which is a contradiction. □
Considering the Compactness Theorem, we might wonder if we can axiomatise the theory of finite
groups. That is, does there exist a theory in a suitable first-order language whose models are
precisely the finite groups?

We may try letting tn be the sentence (∃x1)(∃x2) . . . (∃xn)(∀x)(x = x1 ∨ · · ·∨ x = xn). This is the
sentence “there are at most n elements”: if tn is satisfied in some L-structure A, then A is a group
of at most n elements.

But then we would need T to be the theory of groups together with the “sentence” t = t1∨ t2∨ · · · ,
which is not actually a sentence, as it is infinite. Of course, this doesn’t mean we cannot axiomatise
the finite groups, merely that this attempt has failed. However, this really is impossible!
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Proposition 4.32 (No Axiomatisation of Finite Groups)

The finite groups cannot be axiomatised as a first-order theory. That is, there is no theory T
in any first-order language L whose models are exactly the finite groups.

Proof: Suppose that T is such a theory. Then let

S = T ∪ {¬t1, ¬t2, ¬t3, . . .} where tn = (∃x1)(∃x2) . . . (∃xn)(∀x)(x = x1 ∨ · · · ∨ x = xn).

Any finite subset of S has a model. For example, Cn, where n = 1+max {i : ¬ti ∈ S}, is a model
of S. But then by compactness, S has a model, which is a contradiction. □
Corollary: If a first-order theory T has arbitrarily large finite models, then in fact it has some
infinite model, using the same argument!

In fact, we can prove an even stronger result.

Theorem 4.33 (The Upward Löwenheim-Skolem Theorem)

If a first-order theory S has an infinite model, then S has an uncountable model.

Proof: We can add uncountably many new constants {ci : i ∈ I} to the language, for some index
set I which is uncountable. Then, consider:

S′ = S ∪ {¬(ci = cj) : i, j ∈ I with i ∕= j} .

By assumption, S has an infinite model, which is a model of every finite subset of S′. But then by
compactness S′ has a model A′, which is a model A of S and a finite set of sentences given with
an injection I → A with ci → (ci)A. But then A′ is uncountable, as required. □
Corollary: By Hartog’s Lemma (Theorem 2.26), we can take I = γ(X). Then the proof of the
above yields a model of S which cannot inject into X.

Note: It is easy to write down arbitrarily large groups, but comparatively much harder to write
down arbitrarily large fields.

There is also another version of this theorem, which is in some sense the opposite.

Theorem 4.34 (The Downward Löwenheim-Skolem Theorem)

Let S be a theory in a countable language L = L(Ω,Π). That is, Ω∪Π is countable. Then if
S has a (possibly uncountable) model, then in fact it has a countable model.

Proof: By the Soundness Theorem (4.27), S must be consistent, as it has a model. But then the
model constructed in the proof of the first-order Model Existence Lemma (4.28) is countable! □

4.4 Peano Arithmetic

We now wish to axiomatise the natural numbers N as a first-order theory. Now, the key property
of N is induction: in fact, this uniquely determines the set! We will try to construct our set using
the property of induction with some axioms.

The language then consists of operation symbols Ω = {0, S,+,×}, with arities 0, 1, 2, and 2. We
take no predicates, so Π = ∅. 0 is the constant “zero”, S is the “successor” operator n → n + 1,
and addition + and multiplication × will be constructed in the familiar way.

We are now ready to formalise the natural numbers!
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Definition 4.35 (Peano Arithmetic)

Peano Arithmetic (PA), also known as formal number theory, consists of the sentences:

1. (∀x)(¬Sx = 0). “Nothing comes before 0.”

2. (∀x)(∀y)((Sx = Sy) ⇒ (x = y)). “The successor function is injective.”

3. (∀x)(x+ 0 = x). “Zero is the additive identity.”

4. (∀x)(∀y)(x+ Sy = S(x+ y)). “Associativity of addition holds with 1.”

5. (∀x)(x× 0 = 0). “Zero is a multiplicative fixed point.”

6. (∀x)(∀y)(x× Sy = x× y + x). “Multiplication distributes over the successor.”

7. (∀y1)(∀y2) . . . (∀yn)((p[0/x] ∧ (∀x)(p ⇒ p[Sx/x])) ⇒ (∀x)p). “Induction works.”

In the last sentence, p is a formula with free variables FV(p) = {x, y1, . . . yn}. In fact, this is
an infinite collection of sentences, which defines induction for every formula.

Example 4.36 (Induction)

To see why parameters are needed, consider the formula p given by (x+ y) + z = x+ (y+ z),
representing associativity of addition. We prove that (∀x)(∀y)(∀z)p by induction on z.

Fix x and y in some model of PA. We verify that p[0/z] and (∀z)(p ⇒ p[Sz/z]) hold. By
induction, (∀z)p holds. The Completeness Theorem (4.30) then yields PA ⊢ (∀x)(∀y)(∀z)p.

An obvious model of PA is N0 = {0, 1, 2, . . .}. In fact, N is also a model, but including 0 is more
natural. But by the Upward Löwenheim-Skolem Theorem (4.33), there is an uncountable model
of PA. So is the countable set N is not unique as a set with our desired properties?

Actually, no! The formulation of induction we wanted to replicate was:

(∀A ⊆ N0)(0 ∈ A ∧ (∀x)(x ∈ A ⇒ Sx ∈ A) =⇒ A = N0).

That is, if a subset of N0 contains 0 and is closed under the successor operation, then in fact the
subset must contain every natural number. The problem is that in first-order logic, we cannot do
this quantification over subsets of a structure. Since the language of PA is countable, the induction
axiom-scheme only captures countably many subsets of N0.

Definition 4.37 (Definable)

A subset A ⊆ N0 is called definable in Peano Arithmetic if there is a formula p in PA with
one free variable such that A = pN0

.

The set of squares is thus definable in PA by the formula (∃y)(y × y = x). The set of primes
is definable by (x ∕= 1) ∧ (y | x ⇒ (y = 1 ∨ y = x)).

Note: We tend to use a lot of abbreviations for conciseness, if it is clear what we mean. For
example, y | x is short for “(∃z)(y × z = x)”, 1 is short for S0, and (x ∕= y) is short for ¬(x = y).

Theorem 4.38 (Gödel’s Incompleteness Theorem)

Peano Arithmetic is not a complete theory of the natural numbers. That is, there exists some
formula p which is true in the natural numbers, but which Peano Arithmetic does not prove.

Proof: This theorem is proved using Gödel numbering, and constructing a sentence which means
“this sentence is not provable in PA”. This sentence cannot be provable, by consistency, but also
cannot be disprovable! □
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5 Set Theory

Set theory is really just another mathematical theory. We will axiomatise it as a first-order theory,
much like the theory of groups and rings. This section is therefore a very extended worked example
similar to Example 4.13.

Note: Of course, any model of set theory should contain all of mathematics, since everything is
in some sense a set. We therefore expect this example to be really quite complicated.

5.1 The Zermelo-Fraenkel Axioms

We will study a particular first-order axiomatisation of set theory, developed by Ernst Zermelo
and Abraham Fraenkel. This is often referred to as ZF for short.

The language of this theory has no operation symbols, so Ω = ∅. There is a single predicate ∈,
which has arity 2. This is going to be the “is a member of” predicate.

Definition 5.1 (Set-Theoretic Universe)

A model (1.8) of ZF will be denoted by V , which is a non-empty set with an interpretation
of the binary predicate ∈V ⊆ V × V . Elements of V will then be called sets.

If (a, b) is in ∈V , we say “a is a member of b”, or “a is an element of b”, or “b contains a”.

V is then called the set-theoretic universe.

Note: The words “set”, “member”, and so on no longer have the theoretical meaning we usually
ascribe to them in the world of mathematics. Instead, they simply refers to an object or predicate
in V . However, we will still talk about the existing world of mathematics, of which V is a part!
This is likely to become confusing, but using other words would be cumbersome.

The study of set theory is then really an attempt to describe V .

There are nine “axioms” of this theory, which are sentences in first-order logic of this theory. The
first two are introductory, the next four allow us to build sets, and the last three are properties of
sets which are perhaps less obvious.

Let us consider these axioms now. Each axiom comes with a name, as well as an abbreviation,
for use in proofs. We give a heuristic description of each axiom as well as the sentence to which it
corresponds in first-order logic. The first two axioms are Extensionality and Separation.

1. The Axiom of Extensionality (Ext): “if two sets have the same members, they are equal.”
(∀x)(∀y)((∀z)(z ∈ x ⇔ z ∈ y) ⇒ x = y).

2. The Axiom of Separation (Sep): “we can take a subset of an existing set using a property.”
(∀t1)(∀t2) . . . (∀tn)((∀x)(∃y)((∀z)(z ∈ y ⇔ (z ∈ x ∧ p)))).

Note: Here, p is a formula with free variables FV(p) = {z, t1, . . . tn}. By the first axiom, this y is
unique: we denote it by {z ∈ X : p}. Formally, this is an (n+ 1)-ary operation symbol within the
language. We need the parameters here: given t and x, we may want to form {z ∈ x : t ∈ z}.

These axioms do not guarantee that any sets exist! Let us construct the first set: the empty set.

3. The Empty-Set Axiom (Emp): “there is a set without any elements.”
(∃x)((∀y)¬(y ∈ x)). This is unique by (Ext), and we call it ∅, like a new nullary operator.

4. The Pair-Set Axiom (Pair): “for any x and y, we can form the set {x, y}.”
(∀x)(∀y)(∃z)(∀t)(t ∈ z ⇔ (t = x ∨ t = y)).
By (Ext), this is unique, and z is denoted by {x, y}. We write {x} for {x, x}.
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Remark 5.2 (Ordered Pairs and Functions)

Indeed, (Ext) gives us the general “ignore repeats and ordering” property of sets for free,
because {x, y} = {y, x}. Likewise, {x, x} = {x}.

Ordered pairs can be constructed by the following device: for the two sets x and y, the ordered
pair is {{x} , {x, y}}. This has “first element” x and “second element” y. We denote this pair
as (x, y) for short, and it has the nice property that (a, b) = (c, d) if and only if a = b∧ c = d.

In general, we say that “x is an ordered pair” if (∃y)(∃z)(x = {y, {y, z}}).

Similarly, we define functions. The phrase “f is a function” means that:

(∀x)(x ∈ f ⇒ (∃y)(∃z)(x = {y, {y, z}})  
x is an ordered pair

) ∧ (∀x)(∀y)(∀z)(((x, y) ∈ f) ∧ ((x, z) ∈ f) ⇒ y = z  
function outputs are unique

).

More specifically, “f is a function from x to y”, written f : x → y, means that:

1. f is a function.

2. (∀s)((∃t)((s, t) ∈ f) ⇔ s ∈ x): the first element of all pairs in f is an element of x, and
moreover every element in x has some such pair (the function is defined everywhere).

3. (∀t)((∃s)((s, t) ∈ f) ⇒ t ∈ y): the output of f is always an element of y.

These are formal definitions of ordered pairs and functions!

Now, we return to the axioms, now allowing us to construct more new sets.

5. The Union Axiom (Un): “we can combine two sets.”
(∀x)(∃y)(∀z)(z ∈ y ⇔ (∃t)(t ∈ x ∧ z ∈ t)).
This y is unique by extensionality, and denoted by


x. It is the union of all elements in x,

so contains all the elements which are members of members of x.

In fact, this allows us to show that intersections exist! We can prove that:

(∀x)(¬(x = ∅) ⇒ (∃y)(∀z)(z = y ⇔ (∀t)(t ∈ x ⇒ z ∈ t))).

We can start with a non-empty set x, and form the set y = {z ∈

x : (∀t)(t ∈ x ⇒ z ∈ t)}. This

is a valid construction using (Un) and (Sep), and is unique by (Ext). We write

x for this y.

Note: Technically, we work in a model, and deduce the above proof of the existence of intersections
using the Completeness Theorem (4.30).

Note: We write a ∪ b for the union of the pair-set {a, b}, and a ∩ b for its intersection.

Corollary: We can now define the domain of a function f . If (x, y) ∈ f , then both x and y are
members of


f , since (x, y) = {{x} , {x, y}}. We can thus form the set dom(f), which we call

the domain of f , using the construction dom(f) = {x ∈


f : (∃y)((x, y) ∈ f)}.

Note: As always, when we define new notation like this, we introduce new operation symbols into
the language of set theory, with appropriate arities.

6. The Power-Set Axiom (Pow): “we can form the power-set of a set.”
(∀x)(∃y)(∀z)(z ∈ y ⇔ z ⊆ x), where z ⊆ x is shorthand for (∀t)(t ∈ z ⇒ t ∈ x).
This y is unique by extensionality, and denoted by ℘x.

Corollary: We can construct the Cartesian product of two sets x and y. If s ∈ x and t ∈ y, then
(s, t) = {{s} , {s, t}} ∈ ℘℘(x ∪ y). This allows us to form

x× y = {z ∈ ℘℘(x ∪ y) : (∃s)(∃t)(s ∈ x ∧ t ∈ y ∧ z = (s, t))} .

using (Un), (Pow), and (Sep). In turn, we can form the set yx of all functions f : x → y, defined
as yx = {f ∈ ℘ (x× y) : f is a function from x to y}, using (Pow) and (Sep).
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Remark 5.3 (Infinity)

We can do quite a lot of mathematics with the axioms we have introduced so far. Any model
V of what we have defined so far mus be infinite, because the sequence of sets

∅, ℘∅, ℘℘∅, ℘℘℘∅, ℘℘℘℘∅, . . .

are all pairwise distinct. For another example, we can model the natural numbers!

For any set x, define the successor of x to be the set x+ = x∪ {x}, using (Pair) and (Union).
Then the sets ∅, ∅+, ∅++, ∅+++, and so on are also pairwise distinct.

In fact, we can use this to describe N0. We can write:

0 = ∅, 1 = 0+ = {0} , 2 = 1+ = {0, 1} = {0, {0}} , 3 = 2+ = {0, 1, 2} = {0, {0} , {0, {0}}}

and so on to construct all natural numbers. Of course, formally we introduce new constant
symbols to the language of ZF.

However, while we have infinitely many sets, we do not yet have any infinite sets. That is, we
merely have an infinite collection of individually finite sets.

What about the set of all sets in V ? This would be infinite, but in fact it is not a set! This is
called Russell’s Paradox, and closely mirrors the Burali-Forti Paradox (Theorem 2.24).

Theorem 5.4 (Russell’s Paradox)

There is no “set of all sets”. That is, the sentence (∃x)(∀y)(y ∈ x) is false.

Proof: If this sentence holds in V , then form the set y = {z ∈ x : ¬(z ∈ z)} by (Sep). But this is
a contradiction, since y ∈ y ⇐⇒ ¬(y ∈ y). □
So we cannot easily construct infinite sets with the above axioms. We should add a new axiom,
which asserts the existence of such sets directly.

Definition 5.5 (Successor Set)

We say that x is a successor set if (∅ ∈ x) ∧ (∀y ∈ x)(y+ ∈ x). Here, (∀y ∈ x)p is shorthand
for (∀y)(y ∈ x ⇒ p), for any formula p, and y+ = y ∪ {y} as in Remark 5.3.

Using 0 = ∅, 1 = 0+, and so on, it is clear that 0, 1, 2, and so on are all in any successor set.

With this definition, we may write down our axiom asserting the existence of successor sets.

7. The Axiom of Infinity (Inf): “there are infinite/successor sets.”
(∃x)(x is a successor set).
We can show that there is a smallest successor set, contained within every other.

Corollary: In a model, use this axiom to pick some successor set y. Then, use (Pow) and (Sep)
to form the set z = {t ∈ ℘y : t is a successor set}. Then, since y ∈ z. form x =


z. This is the

smallest successor set, which we denote by ω.

Every successor set contained in ω is ω. This means that inside V we have true induction, since
we are quantifying over all subsets of ω! We call this process ω-induction.

It is easy to see that (∀x ∈ ω)(x+ ∕= 0), where this is an abbreviation for (∀x)(x ∈ ω ⇒ ¬(x+0)).
Also, (∀x ∈ ω)(∀y ∈ ω)((x+ = y+) ⇒ (x = y)).

We are getting close to being able to redefine PA inside of the set ω in ZF!
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We introduce new abbreviations: “x is finite” means there is a y ∈ ω such that x bijects with y,
which can be defined formally if desired.

This still leaves two more axioms to define to finish our definition of Zermelo-Fraenkel set theory.
So far, we have ω, which contains 0, 1, 2, and so on. This was one example of an infinite sequence
of pairwise distinct sets from Remark 5.3. The other example was ∅, ℘∅, ℘℘∅, ℘℘℘∅, and so on.

In fact, there is a map inside V which sends 0 → ∅, 1 → ℘∅, and so on, which is given by some
formula. Such a map is called a function class. We need an axiom which says that the image of a
set under a function class is also a set.

First, let us investigate the notion of a class. We have discussed these before: having proved the
Burali-Forti Paradox (Theorem 2.24), we remarked that ON was the class of all ordinals.

Definition 5.6 (Class)

A class is a collection C of elements of V such that there is a formula p with one free variable
such that C = pV . That is, x is in the class C if and only if p(x) holds in V : pV (x) = 1.

Corollary: V is a class, as we may take any trivial property like (x = x). The collection of sets
of size 1 is also a class, by taking p to be (∃y)(x = {y}).

Definition 5.7 (Proper Class)

A class C given by such a formula p with one free variable x is a set if (∃y)(∀x)(x ∈ y ⇔ p).
That is, if there is a set y with the members of y being precisely those sets for which p holds.

If a class C is not a set, we call it a proper class.

Corollary: We know that V is such a proper class, by Russell’s Paradox (Theorem 5.4). However,
the class given by the formula (∀y)(y is a successor set ⇒ x ∈ y) is in fact ω, which is a set! Thus
it is not a proper class.

Definition 5.8 (Function Class)

A function class is a subset F ⊆ V × V with F = pV for some formula p with precisely two
free variables x and y, which in V satisfies the sentence:

(∀x)(∀y)(∀z)((p ∧ p[z/y]) ⇒ (y = z)).

So (x, y) is in F if and only if p(x, y) holds in V , which we write as F (x) = y. The “set map”
x → {x} is a function class, as we can take p to be the formula (y = {x}).

Now, we are ready to define the eighth axiom of ZF. This is the Axiom of Replacement, which is
an axiom-scheme asserting that the image of a set under a function-class is also a set.

8. The Axiom of Replacement (Rep): “the image of a set under a function-class is a set.”
((∀x)(∀y)(∀z)((p∧p[z/y]) ⇒ (y = z))) ⇒ ((∀x)(∃y)(∀z)(z ∈ y ⇔ (∃u)(u ∈ x∧p[u/x, z/y]))).
This applies for any formula p with free variables x, y, and t1, . . . , tn.

Notice that the first part of this formula is precisely the definition of a function class. The latter
part of this essentially states that there is a set y (the image) for which each element z corresponds
to at least one u ∈ x with p(u, z) holding.

This leaves one axiom! We want a picture of the set-theoretic universe in which sets appear at a
certain time, such that we don’t have some set appearing before all of its elements. In particular,
we want to avoid weird behaviour, like x ∈ x or x ∈ y ∧ y ∈ x (recursion).
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We thus want to define a notion of minimality for sets under the ∈ relation. This brings us to our
ninth and final axiom of Zermelo-Fraenkel set-theory.

9. The Axiom of Foundation (Found): “the set-theoretic universe is regular.”
(∀x)(¬(x = ∅) ⇒ (∃y)(y ∈ x ∧ (∀z ∈ x)¬(z ∈ y))).
That is, all non-empty sets x contain some set y such that y does not contain anything in x.

Corollary: No set contains itself: if x ∈ x, then there would not exist a y ∈ x such that x /∈ y.

In §3.3, we studied the Axiom of Choice. This is sometimes used as the “tenth axiom”: when we
do this, we are working in a model of “Zermelo-Fraenkel Set Theory + Choice” (ZFC).

10. The Axiom of Choice (Choice): “choice functions exist.”
(∀x)((∀y ∈ x)(¬(y = ∅) ⇒ (∃f)(f : x →


x ∧ (∀y ∈ x)(f(y) ∈ y)))).

These are the choice functions we used in the proof of Zorn’s Lemma, for example.

Note: From now on, we simply work in ZF, rather than ZFC, so we do not assume (Choice).

5.2 Induction and Recursion

We now aim to prove slightly more general versions of induction and recursion than the ones we
have used previously. Then, we provide a more proper definition of ordinals than the one in §2.3,
which will allow us to further characterise the universe V .

Definition 5.9 (Transitive Set)

A set x is called transitive if every member of a member of x is in x. That is:

(∀y)((∃z)(z ∈ x ∧ y ∈ z) ⇒ y ∈ x).

That is, if there is a z ∈ x with y ∈ z, then in fact y ∈ x. Equivalently,

x ⊆ x.

Note: This is not the same as saying that ∈ is a transitive relation on the elements of x.

Every member of ω is transitive, by an easy ω-induction. In fact, ω itself is also transitive, since
for all x ∈ ω, we have x ⊆ ω.

Proposition 5.10 (Transitive Closure Lemma)

For all sets x, there is a transitive set t with x ⊆ t.

Proof: Suppose x ⊆ y, with y transitive. Then

x ⊆


y ⊆ y, and in turn


x ⊆ y and so on.

We then want to take the union of all of these.

To form this union, we want to show that 0 → x, 1 →

x, 2 →


x and so on is a function-class.

This would allow us to apply (Rep), as the image of ω would be our desired t.

In the spirit of Definition by Recursion (2.13), we define an attempt to be a function f with:

(dom f ∈ ω) ∧ (f(0) = x) ∧ (∀n ∈ ω)(n+ ∈ dom f ⇒ f(n+) =


f(n)).

An easy ω-induction then shows that two attempts agree on their common domain. That is:

(∀f)(∀g)(∀n)(“f and g are attempts” ∧ (n ∈ dom f ∩ dom g) ⇒ f(u) = g(u)).

Likewise, we may prove that every n ∈ ω is in the domain of some attempt.

(∀n ∈ ω)(∃f)(“f is an attempt” ∧ n ∈ dom f).

We can prove this by ω-induction, defining w = {n ∈ ω : (∃f)(“f is an attempt” ∧ n ∈ dom f)}.
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We show w is a successor set, whence it follows w = ω. The set {(0, x)} is an attempt, so 0 ∈ w. If
n ∈ w, then take f to be an attempt defined at n. Since the members of n are transitive, we have
n ⊆ dom f , and so n+ ⊆ dom f . Replacing f by this extension, we can take dom f = n+ without
loss of generality.

Then g = f ∪ {(n+,

f(n))} is an attempt defined at n+, so n+ ∈ w. This proves that w must be

a successor set, and thus contains ω, and so every n ∈ ω is in the domain of some attempt.

Now, let p be a formula with free variables y and z, defined as:

(∃f)(“f is an attempt” ∧ f(y) = z).

By the fact that two attempts agree on their common domain, we have:

(∀y)(∀z)(∀u)((p ∧ p[u/z]) ⇒ z = u).

But this is exactly the definition of a function-class (5.8), so p defines a function-class! By (Rep),
the image of ω under this function-class is a set. We form w, with z ∈ w if and only if (∃y)p(y, z).
Informally, w = {x,


x,


x, . . .}.

Then, we form t =

w. We show that t is transitive and that x ⊆ t. The latter is easy: {(0, x)}

is an attempt, and so x ∈ w, and therefore x ⊆ t.

For the former, we fix an arbitrary a ∈ t. We want to show that in fact a ⊆ t. Since a ∈ t, there
is some z ∈ w with a ∈ z. But then z = f(u) for some attempt f and n ∈ dom f . We know that
there is an attempt g defined at n+, so n+ ∈ dom g, and hence n ∈ dom g by transitivity.

But then g(n) = f(n) = z, and so g(n+) =

g(n) =


z. Therefore


z = w, and hence we have

a ⊆

z ⊆ t. This proves transitivity of t, as desired! □

Corollary: Since the intersection of a non-empty set of transitive sets is transitive, there is a
smallest transitive set containing x. This is called the transitive closure of x, denoted by TC(x).
In fact, the set we constructed in the above proof is this transitive closure.

Theorem 5.11 (Principle of ∈-duction)

For any formula p with free variables FV(x, t1, . . . , tn), the following sentence holds in ZF:

(∀t1) . . . (∀tn) ((∀x)((∀y ∈ x)p[y/x] ⇒ p) ⇒ (∀x)p) .

That is, if you can always deduce p simply from seeing it hold from all members of x, then in
fact you can deduce it for all x.

Proof: We fix values of t1, . . . , tn. Assume that (∀x)((∀y ∈ x)p[y/x] ⇒ p) holds. That is, for all
x, p(x) holds whenever p(y) holds for all y ∈ x.

Assume that ¬(∀x)p, and fix some x for which ¬p(x) holds. At this point, we want to choose some
∈-minimal counterexample in {y : ¬p(y)}, but this may not be a set.

Fix any transitive set t with x ∈ t, such as the transitive closure of {x}. We can now form the set
of counterexamples in t: define u = {y ∈ t : ¬p(y)} using (Sep).

Since x ∈ u, by (Found) u has some ∈-minimal member. Call this z. If y ∈ z, then y ∈ t, since t is
transitive. Also, by minimality of z, p(y) holds (otherwise y ∈ z would be a counterexample). In
fact, this is true for any y ∈ z, and so by assumption, p(z) holds. This is a counterexample, and
so the sentence in the theorem really does always hold. □
Given all the axioms of ZF apart from (Found), the above theorem is equivalent to (Found). We
have proved one direction, and will now prove the other.
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Theorem 5.12 (Foundation Equivalence)

We call a set x regular if (∀y)(x ∈ y ⇒ “y has an ∈-minimal member”). Then we may restate
the Axiom of Foundation as (∀x)(“x is regular”).

Proof: We prove this by ∈-duction. Fix a set x, and assume y is regular for all y ∈ x. Let z be a
set with x ∈ z. We need to show that z has an ∈-minimal member.

This is easy to do if x is itself such an ∈-minimal member of z. If not, then y ∈ z for some y ∈ x.
By the ∈-duction hypothesis, y is regular, and so z still has an ∈-minimal member! □
Now, we move on from induction to recursion.

Theorem 5.13 (Principle of ∈-cursion)

Let G be a function-class given by some formula p, which is defined everywhere. In terms of
p, this states that (∀x)(∃y)(p(x, y)).

Then there is a function-class F , given by some formula q, such that (∀x)(F (x) = G(F |x)).
Moreover, F is unique, and also defined everywhere.

Proof: The restriction F |x is {(s, F (s)) : s ∈ x}, which is the image of x under the function-class
s → (s, F (s)), given by the formula (∃z)(q(s, z) ∧ t = (s, z)). By (Rep), F |x is therefore a set.

First, we prove uniqueness. Assuming that F1 and F2 both work, we prove (∀x)(F1(x) = F2(x))
by ∈-duction. Fix a set x and assume F1(y) = F2(y) for all y ∈ x. Then F1|x = F2|x, and thus
F1(x) = G(F1|x) = G(F2|x) = F2(x) as required.

Now, we prove existence. We write “f is an attempt” to mean that f is a function such that dom f
is transitive and (∀x ∈ dom f)(f(x) = G(f |x)).

If x ∈ dom f , then x ⊆ dom f by transitivity, and so f |x is well-defined. An easy ∈-duction then
yields the result that if x is in the domain of two attempts f and g, then f(x) = g(x). A similar
argument shows that (∀x)(∃f)(“f is an attempt” ∧ x ∈ dom f).

Fix a set x, and assume that for every y ∈ x, there is an attempt defined at y. The domain of this
attempt contains the transitive closure t of {y}, and the restriction of this attempt to t is still an
attempt. This means that for every y ∈ x, there is a unique attempt fy with dom fy = t.

Then {fy : y ∈ x} is a set by (Rep), and f ′ =

{fy : y ∈ x} is an attempt with x ⊆ dom f ′. We

can finally define f = f ′ ∪ {(x,G(f ′|x))}.

Let q be the formula (∃f)(“f is an attempt” ∧ y = f(x)). Then q defines a function-class F , and
this is defined everywhere by the fact that every x is in the domain of some attempt. By definition
of an attempt, (∀x ∈ dom f)(f(x) = G(f |x)) as required. □
Note: We can generalise ∈-duction and ∈-cursion to other relation-classes. These are formulae r
in two free variables, with the interpretation being a subset of V × V . If the formula is (x ∈ y),
then the associated relation really is the ∈ relation.

Definition 5.14 (Well-Founded)

A relation-class r is well-founded if every non-empty set has an r-minimal member:

(∀x)(¬(x ∕= ∅) ⇒ y ∈ x ∧ (∀z ∈ x)(¬r(z, y))).

A relation-class r is local if for every set x, the r-predecessors of x form a set:

(∀x)(∃y)(∀z)(z ∈ y ⇔ r(z, x)).
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Corollary: If r is a local relation-class, then we can define the notion of r-closure, much like the
notion of transitive closure. If r is also well-founded, then we can prove r-duction and r-cursion.

Corollary: In what follows, we can restrict our attention to relations defined on sets. If r is a
relation on a set a (that is, r ⊆ a× a) then r is automatically local. For any x ∈ a, we can simply
form {y ∈ a : r(x, y)} by (Sep). We thus only need to assume well-foundedness.

Note: This definition identifies the key properties of the ∈ relation which were actually needed
for ∈-duction and ∈-cursion. Both well-foundedness and locality were trivial for ∈ (in fact, the
former is simply given by the Axiom of Foundation).

Note: We often write r(x, y) and (y, x) ∈ r in the familiar way, as xry.

The next result shows that any well-founded relation on a set can be modelled by ∈, provided that
we assume a further property: extensionality.

Definition 5.15 (Extensional)

Let r be a relation on a set a. We say that r is extensional if:

(∀x ∈ a)(∀y ∈ a)((∀z ∈ a)(zrx ⇔ zry) ⇒ x = y).

That is, x and y are equal if they share the same r-predecessors. The Axiom of Extensionality
is the statement that this holds for the ∈ relation over the whole universe of sets.

We now use this to extend Proposition 2.14 to something more general and powerful.

Theorem 5.16 (Mostowski’s Collapsing Theorem)

Let r be a well-founded extensional relation on a set a. Then there is a transitive set b and a
bijection f : a → b such that:

(∀x ∈ a)(∀y ∈ a)(yrx ⇔ f(y) ∈ f(x))

Moreover, the pair (b, f) is unique.

Proof: By r-cursion, there is a function-class f with (∀x ∈ a)(f(x) = {f(y) : y ∈ a, yrx}). Define
b = {f(x) : x ∈ a}, which is a set by (Rep). Since the collection of pairs {(x, f(x)) : x ∈ a} is also
a set by (Rep), we can take f to be a function!

We claim that this pair (b, f) works. Firstly, b is transitive: for any z ∈ b, there is some x ∈ a with
z = f(x), and so z = {f(y) : y ∈ a, yrx}. Thus if w ∈ z, then by definition y ∈ b.

Next, by definition f is surjective, and for x and y in a, yrx implies f(y) ∈ f(x). It thus remains
to show that f is injective, which indeed will automatically prove that f(y) ∈ f(x) implies yrx.
This is as f(y) ∈ f(x) means f(y) = f(z) for some z ∈ a with zrx, and so injectivity yields y = z.

To show injectivity, we say “f is injective at x” to mean that (∀y ∈ a)(f(y) = f(x) ⇒ y = x). We
need then to show that f is injective at x for all x ∈ a, which we do by r-duction.

We fix x ∈ a, and assume f is injective at s for all s ∈ a with srx. Now, assume that y ∈ a with
f(y) = f(x). That is, we have:

{f(t) : t ∈ a, try} = {f(s) : s ∈ a, srx}

By the induction hypothesis, {t : t ∈ a, try} = {s : s ∈ a, srx}, so by extensionality y = x.

Now, we prove that this is in fact unique. Assume that (b, f) and (b′, f ′) both work. We prove by
r-duction that (∀x ∈ a)(f(x) = f ′(x)). Fix some x ∈ a and assume f(y) = f ′(y) for all y ∈ a with
yrx. Then if w ∈ f(x), transitivity yields w ∈ b, so w = f(y) for y ∈ a. Since f(y) ∈ f(x), yrx,
and by induction w = f(y) = f ′(y) ∈ f ′(x). By symmetry, extensionality yields f = f ′. □
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Note: In some sense, f is an order-isomorphism between a with relation r and b with relation b.
This is what we mean by r being modelled by ∈.

Corollary: Since ∈ is well-founded and extensional everywhere, we really did need both of these
assumptions on r: this is the strongest possible result.

5.3 Ordinals Redux

Now, we make good on our promise from §2.3 to define ordinals more formally.

Definition 5.17 (Ordinal)

An ordinal is a transitive set α which is well-ordered by ∈. Equivalently, ∈ is a linear order
on α, by the Axiom of Foundation.

Note: For a a set and r a well-ordering of a, Mostowski’s Collapsing Theorem yields a set b such
that (a, r) is order-isomorphic to (b,∈). That is, b is an ordinal, and so by uniqueness for any set a
which is well-ordered, there is a unique ordinal b isomorphic to this. We call this the order type.

Note: We let ON denote the class of ordinals. This is a proper class, by the Burali-Forti paradox
(Theorem 2.24). The order-isomorphism class of every well-ordered set has a unique ordinal in it.

We now wish to prove some familiar properties of ordinals using this new definition.

Proposition 5.18 (Ordinal Properties)

Let α and β be ordinals, and a be a set of ordinals. Then:

(i) Every member of α is an ordinal.

(ii) α ∈ β if and only if α < β.

(iii) Either α ∈ β, β ∈ α, or α = β, so ∈ is a linear order on ON.

(iv) α+ = α ∪ {α}.

(v)

a is an ordinal, with


α = sup a.

Proof: Since α is transitive, for x ∈ α we have x = {y ∈ α : y ∈ x}, which is the proper initial
segment Ix of α. Then (i) and (ii) follow immediately.

Then, (iii) follows from (ii) and the trichotomy of the order-isomorphism relation (Theorem 2.15),
given the fact that order-isomorphic ordinals are identical.

We prove (iv) by letting γ = α ∪ {α} be the successor of α (in the sense of ZF, rather than in the
sense of ordinals from §2.3). It is then straightforward to check that γ is an ordinal: if x ∈ γ, then
x = α or x ∈ α, so x is an ordinal. Furthermore, γ conists of a maximum element α and the set α
as a proper initial segment. So in fact γ = α+ in the sense of original ordinal arithmetic.

Finally, we want to prove that

a is an ordinal and that


α = sup a. The union of transitive sets

is itself transitive, so indeed the first part of this holds. It then follows from (ii) and (iii) that we
have β  α if and only if β = α or β ∈ α if and only if β ⊆ α.

But then a is a nested set of well-ordered sets, which are each well-ordered by ∈. Therefore, by
Proposition 2.18,


a is itself well-ordered by ∈, and is therefore an ordinal itself. It is clear that

a = sup a in the original sense, completing the proof. □
Note: Recall from §2.1 that α < β means that α is order-isomorphic to a proper initial segment
of β. The first two points show that β really is the set of ordinals strictly less than β.
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Note: Here, α+ is as in the chapter on ordinals: a well-ordered set with α a proper initial segment
plus one more element which is a maximum. This has an order-type, and we prove here in (iv)
that this is a successor of α in the new sense.

Note: Lastly, we see that a set x of well-ordered sets has an upper bound. We prove here that it
is equal to the union of the set!

Example 5.19 (Ordinals up to ω)

Firstly, 0 = ∅ is an ordinal.

By (iv) of the above proposition, an ω-induction shows that every member of ω is an ordinal.
By (v), we then see that


ω = ω is also an ordinal, as it is transitive!

Then ω = supω, and so the ω from §2.3 really is the same as the smallest successor set (5.5)
we defined earlier to be ω.

5.4 A Picture of the Universe

Now, our idea is to build up the set-theoretic universe V . We start with ∅, and repeatedly apply
the operations ℘ and


, as we are allowed to do from the axioms (Pow) and (Un) of ZF.

This gives us ∅, then ℘∅, then ℘℘∅, and then

{∅,℘∅,℘℘∅, . . .}, and so on. This is starting to

look quite familiar: this is very similar to how we constructed ordinals in §2.3!

Formally, we define sets Vα by ∈-cursion, for any α ∈ ON. This process generates the von Neumann
Hierarchy of sets, which is an infinite hierarchy of sets with the ordinals along the middle.

Ordinals ON

V0 = ∅
V1 = ℘∅
V2 = ℘℘∅

Vω =

{V0, V1, V2, . . .}

· · ·

Vω+1 = ℘Vω

Vα = sup {Vβ : β < α}
Vα+1 = ℘Vα

· · ·

· · ·

V0 = ∅
Vα+1 = ℘Vα

Vλ+1 = sup {Vγ : γ < λ}

Definitions:

Our aim now is to show that every set in the universe V appears somewhere in this universe: if
X ∈ V , then X ∈ Vα for some α ∈ ON. This is reminiscent of Hartog’s Lemma (Theorem 2.26),
which stated that for any set X there is always an ordinal which is “bigger” than X.

Proposition 5.20 (Ordinal Transitivity)

Vα is transitive for all ordinals α ∈ ON.

Proof: We show this by ∈-duction on α., where the base case of V0 = ∅ is obvious.

If α = β + 1, then assume Vβ is transitive. Let x ∈ Vα and y ∈ x. We need to show that y ∈ Vα.
But since x ∈ Vα = ℘Vβ , we have y ∈ x ⊆ Vβ , and by transitivity of Vβ we have y ⊆ Vβ . Therefore
y ∈ ℘Vβ = Vα, exactly as required. If α is a non-zero limit ordinal, then Vα is the union of the
transitive sets Vβ for β < α, and hence it is itself transitive. □
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Proposition 5.21 (Ordinal Nesting)

For all ordinals α  β, we have Vα ⊆ Vβ .

Proof: We perform ∈-duction on β. It is clearly enough to consider the case α < β, which makes
the base case of β = 0 trivial.

If β = γ + 1, then α  γ, so Vα ⊆ Vγ , and so Vα ∈ ℘Vγ = Vβ . This is transitive, so Vα ⊆ Vβ . If β
is a non-zero limit ordinal, then for α < β, Vα ⊆ Vβ by definition. □
Now, we are ready to prove that the von Neumann hierarchy really is exhaustive!

Theorem 5.22 (Exhaustivity of von Neumann Hierarchy)

The von Neumann hierarchy exhausts the set-theoretic universe V . That is, every set x is a
member of Vα for some ordinal α: the sentence (∀x)(∃α ∈ ON)(x ∈ Vα) holds in ZF.

Proof: If x ∈ Vα, then x ⊆ Vα by transitivity. Conversely, if x ⊆ Vα, then x ∈ ℘Vα = Vα+1. But
then this theorem is equivalent to the assertion that (∀x)(∃α ∈ ON)(x ⊆ Vα).

For any set x, the least ordinal α with x ⊆ Vα is called the rank of α, and denoted rank(x). We
thus show that every set has a rank by ∈-duction.

Fix a set x, and assume that every y ∈ x has a rank. Set α = sup {rank(y)+ : y ∈ x}. By (Rep),
this is a valid construction. For y ∈ x, we have y ⊆ Vrank(y), and so y ∈ Vrank(y)+1 ⊆ Vα.

But y was an arbitrary element of x, so it follows immediately that x ⊆ Vα. □
Corollary: Here, rank(x)  sup {rank(y)+ : y ∈ x}. In fact, we can prove a stronger result!

Proposition 5.23 (Rank Relation)

Indeed, rank(x) = sup {rank(y)+ : y ∈ x} for every set x.

Proof: We need only show that x ∈ Vα implies that rank(x) < α. If x ∈ Vα, then α ∕= 0, so either:

• α = β + 1, in which case x ∈ ℘Vβ , so x ⊆ Vβ , and hence rank(x)  β < α, or

• α is a non-zero limit ordinal, in which case x ∈ Vβ for some β < α. But then, since Vβ is
transitive, we have x ⊆ Vβ , which means rank(x)  β < α once again.

If, α = rank(x), then for any y ∈ x, y ∈ Vα, and so rank(y) < α as above. But then rank(y)+  α,
so we have sup {rank(y)+ : y ∈ x}  α = rank(x) as required. □
Corollary: The above result and an easy ∈-duction shows that rank(α) = α for all α ∈ ON.
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6 Cardinals

We are interested in the size of sets. For two sets x and y, we introduce the notation “x ≡ y” to
mean “(∃f)(“f is a bijection from x to y)”.

This defines an equivalence class on V . We want to define some sort of cardinality of x to be a set
card(x) such that card(x) = card(y) if and only if x ≡ y.

A natural option is to take card(x) to be the ≡-equivalence class {y : y ≡ x}. But in fact for any
non-empty set x, this is a proper class (not a set), and so we cannot do this! Another more sensible
option might be to instead take some representative of this class.

We can certainly do this in ZFC (that is, given the Axiom of Choice) by choosing some arbitrary
representative. Can we do something similar in ZF alone? It turns out we can!

Definition 6.1 (Cardinality in ZFC)

In ZFC, we define card(x) to be the least ordinal α ∈ ON such that α ≡ x.

Note: This is always possible: the Axiom of Choice is equivalent to the Well-Ordering Principle
by Theorem 3.18, and so we can well-order x.

Definition 6.2 (Cardinality in ZF)

In ZF, we define the essential rank ess rank(x) of a set x to be the least ordinal α ∈ ON such
that there exists a set y with rank(y) = α and y ≡ x.

Now, we can define the cardinality of a set x. Take α = ess rank(x), and consider Vα+1. We
define the cardinality card(x) = {y ∈ Vα+1 : y ≡ x}.

Note: In this chapter, we will work in ZFC from now on. Rather than focusing on the precise
definition of cardinality, we care mainly about the rule “card(x) = card(y) if and only if x ≡ y”.

Definition 6.3 (Cardinal)

A set m is called a cardinal if m = card(x) for some set x.

We say that m is the cardinality of x.

6.1 The Alephs

Let’s consider a special type of ordinal. Remember that here, we use the formal set-theoretic notion
of ordinals from §5.3, rather than the original definitions fron §2.3. Of course, these are equivalent,
but we use results about transitivity.

Definition 6.4 (Initial Ordinal)

An ordinal α is called an initial ordinal if (∀β ∈ ON)(β < α ⇒ ¬(α ≡ β)).

Example 6.5 (Initial Ordinals)

For any x, the Hartog ordinal constructed in the proof of Hartog’s Lemma (Theorem 2.26) is
an initial ordinal. Similarly, for any n ∈ ω, γ(n) = n+ is also an initial ordinal, by an easy
ω-induction. Every member of ω is an initial ordinal, and thus so is ω.
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Note: Not every ordinal is an initial ordinal! ω2 is not an initial ordinal, as ω2 ≡ ω. In fact, as ω
is countably infinite, every infinite countable ordinal bijects with ω (by definition of countability).

Corollary: The first initial ordinal after ω is ω1, the smallest uncountable ordinal.

In fact, we can list all initial ordinals!

Definition 6.6 (Recursive ω-ordinals)

We define a series of ordinals ωα for α ∈ ON using ∈-cursion, with ω0 = ω.

ωα+1 = γ(ωα)

ωλ = sup {ωα : α < λ}

where γ(ωα) refers to the Hartog ordinal, and λ is a non-zero limit ordinal.

Proposition 6.7 (Initial Ordinals)

The ordinals ωα for α ∈ ON are precisely the infinite initial ordinals.

Proof: For ordinals α < β, if β injects into α, then by the Schröder-Bernstein Theorem (3.11),
we must have α ≡ β. Thus if β is an initial ordinal, then β does not inject into α for any α < β.

We prove first that ωα is an initial ordinal for all α ∈ ON, using induction on α. The cases where
α = 0 and α+ 1 is a successor ordinal are trivial, so we consider the limit case of ωλ.

Suppose that ωλ = γ for some γ < ωλ. Then γ < ωβ for some β < λ, and so an easy induction on
λ shows that ωβ < ωλ. But then ωβ injects into γ, which is a contradiction, since by the induction
hypothesis ωβ is an initial ordinal.

Conversely, let δ be an infinite initial ordinal. Once again, an easy induction shows that α < ωα

for all ordinals α ∈ ON. There is therefore a least ordinal α with δ < ωα.

Since δ is infinite, α ∕= 0. Also, if α is a limit ordinal, then δ < ωβ for some β < α, contradicting
the minimality of α, so in fact α is a successor.

This means that for some ordinal β ∈ ON, we have ωβ  δ < ωβ+1 = γ(ωβ). By definition of
γ(ωβ), δ must inject into ωβ , and so since δ is an initial ordinal, we must have ωβ ≡ δ. □

Definition 6.8 (Cardinal Numbers)

We write ℵα (pronounced “aleph-alpha”) for the cardinality card(ωα).

Note: In ZFC, the ℵ-numbers are the cardinalities of infinite sets. In ZF, we must restrict this
definition to only the well-ordered sets, as we do not have the Well-Ordering Principle (3.17).

6.2 Cardinal Arithmetic

Note: We often write m, n, and p for cardinals and M , N , and P for sets with these cardinalities.

Definition 6.9 (Cardinal Ordering)

Write m  n if M injects into N , and m < n if m  n but m ∕= n. This is well-defined (it
does not depend on the specific choices of M and N).

Corollary: This relation yields a partial order on cardinals: the Schröder-Bernstein Theorem
proves antisymmetry, while transitivity is obvious by function composition.
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Corollary: In fact, in ZFC  yields a linear order on cardinals.

Definition 6.10 (Cardinal Arithmetic)

We define m + n = card(M ⊔N), mn = card(M ×N), and mn = card(MN ). Here, the set
MN refers to the set of functions from N to M .

Once again, these definitions are independent of the choices of M and N .

Remark 6.11 (Properties of Cardinal Arithmetic)

We have commutativity and associativity of cardinal addition and multiplication:

m+ n = n+m (m+ n) + p = m+ (n+ p)

m× n = n×m (m× n)× p = m× (n× p)

We also have distributivity: (m+ n)p = mp× np.

Exponentiation also has familiar properties:

(mn)p = mp × np mn+p = mn ×mp (mn)p = mnp.

If m  n, then m+p  n+p, and mp  np. Additionally, mp  np and pm  pn. So cardinal
arithmetic is quite intuitive and familiar! All of these properties can be checked by writing
down injections between suitably chosen sets.

Proposition 6.12 (m  2m)

For any cardinal m, we have the inequality m  2m.

Proof: This follows by Cantor’s diagonal argument, which shows that there is no surjection from
M → 2M = {0, 1}M = ℘M . Therefore ℵ0 < 2ℵ0 . □
Note: Compared to ordinal arithmetic, in which we had ω = 2ω, cardinal arithmetic seems much
more logical! Similarly, we have 2× ℵ0 = ℵ0 × 2 = ℵ0, but 2× ω = ω ∕= ω × 2.

Theorem 6.13 (Squaring Cardinals)

For all ordinals α, we have ℵα × ℵα = ℵα.

Proof: We prove ωα×ωα ≡ ωα by induction on α. The base case is ω×ω ≡ ω, as required. Now,
assume that for all β < α, we have ωβ × ωβ ≡ ωβ . We define a well-ordering of ωα × ωα by:

(x, y) < (w, z) ⇐⇒

max {x, y} < max {w, z}
max {x, y} = max {w, z} = δ and either y < z or x < w.

Now, fix some δ ∈ ωα×ωα and choose β < ωα such that Iδ ⊆ β×β. If δ = (x, y), then for example
β = max {x, y}+1 is sufficient. By the induction hypothesis, either β is finite or (as card(β) < ωα)
we have β × β ≡ β. Then card(Iδ)  card(β × β) < ωα, and so the order type of Iδ is δ < ωα.

But then ωα × ωα is a well-ordered set whose proper initial segments have order types less than
ωα, and so the order type of ωα × ωα is at most ωα, which shows that ℵα × ℵα  ℵα.

The reverse can be shown easily: ℵα × ℵα  ℵα × 1 = ℵα, proving equality. □


