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1 Primes and Congruences

In this course, we study the ring of integers Z. We especially will focus on primes, investigating
questions like the limiting distribution of prime numbers.

1.1 Motivating Examples

For integers x, we define the prime counting function π(x) to be the number of primes less than
or equal to x, that is:

π(x) = # {p | 1 󰃑 p 󰃑 x, p a prime}

The Riemann Hypothesis is equivalent to the proposition that ∀x > 3, |π(x)− li(x)| 󰃑 √
x lnx.

What is this function li(x)? It is the logarithmic integral:

li(x) =

󰁝 x

2

dt

ln t

We will see why this is true in due course.

We might also look at the study of Diophantine equations, which are equations where we desire
integer solutions. A famous example is the equation underlying Fermat’s last theorem:

XN + Y N = ZN where X,Y, Z,N ∈ Z, N 󰃍 3, XY Z ∕= 0

which Fermat claimed had no solutions.

Thirdly, we might look at computational problems in prime factorisation: given some large N ,
can we “quickly” decide whether N is prime? If it is composite, can we “quickly” find its prime
factorisation?

1.2 Prime Numbers

Of course, we all know what prime numbers are. Let’s formalise some of their properties.

Proposition 1.1 (Division Algorithm)

If a, b ∈ Z with b > 0, there are unique q, r ∈ Z such that qb+ r = a and 0 󰃑 r < b.

Proof: Take the set {a− nb : n ∈ Z}. It has a least non-negative element: choose this and call it
r. This is at least zero by construction, and we know r < b: if this were not the case, r − b would
also be in the set, also be non-negative, and be strictly smaller. Then q exists, since r = a − nb
for some n by definition.

This q must also be unique. If q and q′ are different solutions, then b(q − q′) = r − r′. The left
side has magnitude at least b, but the right side has magnitude less than b: a contradiction! □

Definition 1.2 (Factor, Prime)

The integer a divides the integer b if there is an integer k such that ka = b. We write a | b,
and say a is a factor of b, or that b is divisible by a. Otherwise, we write a ∤ b.

A prime number p is a positive integer with exactly two factors (1 and p). A number which
is not prime is called composite. 1 is therefore not a prime number: it has only one factor,
rather than exactly two.
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Now, suppose we take some sequence of numbers a1, . . . , an, not all zero. Then, we take the set
I = {λ1a1 + . . .+ λnan}, where the λi are all in Z. What can we say about this set? In fact, it
must have a very particular structure: it is dZ for some d.

Proposition 1.3 (Highest Common Factor)

There exists some positive integer d such that this I is equal to the ring dZ. This is called
the highest common factor, or greatest common divisor.

Proof: Take the least positive element of I. Obviously, dZ ⊆ I: d is a linear combination of the
ai, so linear multiples of it are also such linear combinations. Also, any k in I can be written as
k = qd+ r, where 0 󰃑 r < d. But since d was minimal, r must be 0, so k ∈ dZ, and so I ⊆ dZ. □
Corollary: If e is a factor of every ai, then it is also a factor of d.

Corollary: For integers a, b, c with a, b not both zero, if the highest common factor of a and b
(written (a, b) for short) is a factor of c, then there are integers x and y such that xa+ yb = c, and
vice versa.

This corollary is known as Bézout’s identity.

Remark 1.4 (Euclid’s Algorithm)

Euclid’s Algorithm allows us to compute the highest common factor of two numbers. If a 󰃍 b:

a = q0b+ r1

b = q1r1 + r2

r1 = q1r2 + r3

...

rk = qk+1 + rk+1 + 0

This always terminates in at most b steps, since b, r1, r2, . . . is a strictly decreasing sequence
of integers. Thus we can find the highest common factor of two numbers in linear time.

Note that (a, b) = (b, r1) = (r1, r2) = · · · = (rk+1, 0) = rk+1.

We can also use this algorithm in reverse to find the x and y from Bézout’s identity!

Now, let’s think back to primes.

Proposition 1.5 (Prime Divisibility)

If p | ab, then p | a or p | b (or both).

Proof: Suppose p ∤ a. Then (a, p) is a positive factor of p, so is 1 or p. As p ∤ a, it cannot be p
and so must be 1. So there are x, y such that xa + yp = 1, or multiplying, xab + ypb = b. Note
that p | ab | xab, and p | ypb (obviously), so p is a factor of the left hand side. But then p | b.

This argument in reverse shows the proposition. If p ∤ b, then p | a. So in fact one or the other
must be true, as required. □
A prime factor of a number n is a factor p | n which is prime. A prime factorisation of some
number n is therefore a list of (not necessarily distinct primes) whose product is n. For example,
2× 2× 3× 5 = 60 is a prime factorisation of 60. Then 2, 3, and 5 are prime factors of 60. In fact,
these are the only prime factors, and we can prove this is true in general.
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Theorem 1.6 (Fundamental Theorem of Arithmetic)

Every integer n can be expressed as a product of primes, unique up to reordering.

Proof: Existence is proved by strong induction. This is true for n = 2, as 2 | 2. Suppose it is
true for n = 2, 3, 4, . . . , n − 1. Then if n is prime, it is true for n, and if n is composite, then by
definition n has some factor 1 < k < n. This k has some prime factor by the inductive hypothesis,
which is also a prime factor of n.

Uniqueness is proved similarly. Suppose

n =

k󰁜

i=1

prii =

l󰁜

j=1

q
sj
j with pi, qj primes and ri, sj ∈ N

Then p1 | n, so must divide some qj . Divide by p1 to get a strictly smaller expression. □
How do we find the prime factors pi given a number N? Ideally, we have an algorithm much like
Euclid’s. First, we look at what we call polynomial-time algorithms.

Definition 1.7 (Polynomial-Time Algorithm)

An algorithm is said to run in polynomial time if there exist constants b, c ∈ R such that for all
N > 1, the algorithm terminates after performing at most b× (lnN)c elementary operations.
If the algorithm takes in multiple inputs, N refers to the maximum of the Ni.

Here, elementary operations are additions and multiplications of digits in a fixed base.

Note: This is the class of “fast” algorithms. Exponential-time algorithms exist, and cannot be
bounded by this expression, so they can often take much longer to run.

Note: This is primarily an asymptotic property. It is possible that a polynomial-time algorithm
has extraordinarily large bounding constants b and c, such that an exponential-time algorithm can
outperform it on most reasonably-sized inputs. In the long run, rhough, the former algorithm will
dominate, as exponentials outgrow polynomials asymptotically.

Euclid’s algorithm is polynomial-time. So is primality testing: this was proved in 2002. The näıve
factorisation algorithm of testing division up to

√
N is not polynomial-time: asymptotically, this

is larger than any power of lnN . This is not the best algorithm, but we currently do not know of
any polynomial-time factorisation algorithms.

Theorem 1.8 (Infinitude of Primes)

There are infinitely many prime numbers: π(x) is unbounded.

Proof: Suppose not, and there are finitely many prime numbers. Take the product of all of them:
N = 2× 3× 5× . . .× plargest. Then N + 1 is not divisible by any of these primes. However, every
number has a prime factor, so this is a contradiction. □
In fact, the best way to find large primes (say, on the order of 50 digits), is to generate numbers
of the right size at random and apply a fast primality test! How long this takes depends on the
density of prime numbers, which depends on the behaviour of π(x).

Another way to find primes is to look at certain patterns, such as that of the Mersenne primes. If
p is a prime, then 2p − 1 is often prime, and more importantly there is a very fast test to see if it
is. The largest known prime known as of the end of 2024 is 282589933 − 1, and it was found while
this course was being lectured!
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1.3 Modular Arithmetic

Modular arithmetic will be a large focus of this section. We now define it formally.

Definition 1.9 (Congruence)

Fix N ∈ N. If a, b ∈ Z, we write

a ≡ b (mod N) ⇐⇒ N | (a− b)

and say that a is congruent to b modulo N . We write Z/NZ for the quotient ring of Z under
the ideal NZ. Note that this is an equivalence relation on Z with classes a+NZ.

Note: Addition and multiplication are well-defined modulo N : (a+NZ)+(b+NZ) = (a+b)+NZ
and (a+NZ)(b+NZ) = ab+NZ.

Proposition 1.10 (Units modulo N)

Let a ∈ Z. Then the following are equivalent:

(a) gcd(a,N) = 1

(b) ∃b ∈ Z s.t. ab ≡ 1 (mod N)

(c) a+NZ generates the group (Z/NZ,+).

Proof: (a ⇔ b) gcd(a,N) = 1 ⇐⇒ ∃b, y ∈ Z s.t. ab+ yN = 1 ⇐⇒ ab ≡ 1 (mod N).

(b ⇒ c) 1+NZ obviously generates the group: any b can be generated with b additions. We know
a generates 1, so must generate the whole group.

(c ⇒ b) If a+NZ is a generator, then ∃b ∈ N s.t. ab+NZ = 1 +NZ, so we are done. □
We write (Z/NZ)× ⊆ Z/NZ for the set of a +NZ satisfying the previous proposition, and often
identify it as a multiplicative group. We write φ(N) for the cardinality of this set, which is

φ(N) = # {1 󰃑 a 󰃑 N with gcd(a,N) = 1} .
This is called Euler’s totient function.

Corollary: (Z/NZ)× is a group under multiplication.

Corollary: If N > 1, then φ(N) 󰃑 N − 1, with equality if and only if N is prime.

Corollary: The cyclic group CN of order N has precisely φ(N) elements with order N exactly.

Theorem 1.11 (Euler-Fermat Theorem)

Suppose a,N ∈ Z, N > 1, gcd(a,N) = 1. Then aφ(N) ≡ 1 (mod N).

Proof: Observe that (Z/NZ)× is a group of order φ(N). Then, by Lagrange’s theorem, we have
that (a+NZ)φ(N) = aφ(N) +NZ = 1 +NZ. □

Theorem 1.12 (Fermat’s Little Theorem)

For any prime p and integer a, ap ≡ a (mod p).

Proof: If p | a, then ap ≡ a ≡ 0 (mod p).

Otherwise, gcd(a, p) = 1. Then aφ(p) = ap−1 ≡ 1 (mod p). Multiplying by a yields ap ≡ a (mod p)
exactly as required. □
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Example 1.13 (Simultaneous Congruences)

Can we find x ∈ Z such that x ≡ 3 (mod 10) and x ≡ 7 (mod 13)?

We can obviously do this if we find u and v such that

u ≡ 1 (mod 10) u ≡ 0 (mod 13)

v ≡ 0 (mod 10) v ≡ 1 (mod 13)

(by taking x = 3u + 7v). By Euclid, we can find a, b such that 10a + 13b = gcd(10, 13) = 1.
In fact, a = −9 and b = 7 works. Then, we take u = 13b and v = 10a.

So finally, x = 39b+70a, which is −357. Indeed, this is a solution! We can also add multiples
of 10× 13 = 130, to get eg. 33 as a positive solution.

Note: From now on, we write (a, b) for gcd(a, b). If (a, b) = 1, we say that a and b are coprime.

Theorem 1.14 (Chinese Remainder Theorem)

Suppose we are given integers m1 . . .mk satisfying ∀i,mi > 1 and ∀i, j we have (mi,mj) = 1.
Then for given integers a1 . . . ak, the simultaneous congruence

x ≡

󰀻
󰁁󰁁󰀿

󰁁󰁁󰀽

a1 (mod mi)
...

ak (mod mk)

has a solution which is unique modulo M =
󰁔

mi.

Proof: (Uniqueness) If x, y are two solutions, then x ≡ y (mod mi) for all i. Then mi | (x − y)
for all i, and as they are pairwise coprime, we have M | (x− y).

(Existence) Define Mi =
󰁔

j ∕=i mj . Then (mi,Mi) = 1. By Bézout’s identity, there are then
integers such that ximi + yiMi = 1.

In particular, yiMi = 1 (mod mi), and yiMi = 1 (mod mj) for all j ∕= i. Thus

x =

k󰁛

i=1

aiyiMi

is a solution, which proves the theorem. □

Theorem 1.15 (Ring Isomorphism)

Given moduli as before, the function

θ : Z/MZ → Z/m1Z× · · ·× Z/mkZ
a+MZ 󰀁→ (a+m1Z, . . . , a+mkZ)

is a ring isomorphism: it is bijective and respects addition and multiplication.

Proof: (Bijection) True by the Chinese Remainder Theorem (1.14).

(Homomorphism) The codomain ring is defined componentwise, so we need only check that the
map onto Z/miZ respects addition and multiplication.

But this follows immediately from the definition of these operations! So this function θ really is a
ring isomorphism. Thus the product of the individual rings is isomorphic to the main ring. □
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Corollary: θ restricts to a group isomorphism (Z/MZ)× → (Z/m1Z)× × · · ·× (Z/mkZ)×.

Proof: θ gives you a bijection between the multiplicative groups (Z/MZ)× and the elements of the
product ring which have a multiplicative inverse. But this target ring is defined componentwise,
which is the product ring of elements which multiplicative inverses in each component ring! This
is simply (Z/miZ)× for each i, as desired. □
We will soon show that if N is a prime, then (Z/NZ)× is cyclic. In fact, with this corollary, we
will show that if N > 1 is an odd squarefree integer, then N is a prime only if (Z/NZ)× is cyclic.

Definition 1.16 (Multiplicative Functions)

Let f : N → C be a function. We say f is multiplicative if

∀m,n ∈ N s.t. (m,n) = 1, f(mn) = f(m)f(n)

and we say f is totally multiplicative if we can drop the restriction (m,n) = 1. These are
genuinely different definitions, as we shall soon see.

Corollary: Clearly, the constant function f(n) = 1 and the identity function f(n) = n are both
totally multiplicative.

Corollary: The totient function φ is not, as φ(2) = 1 but φ(2 · 2) = 2 ∕= 1 · 1.

However, we now show that the totient function is multiplicative, proving that our two definitions
are in fact distinct.

Proposition 1.17 (Multiplicative Totient Function)

The totient function φ is multiplicative.

Proof: φ(m) = #(Z/mZ)×. We need to show that for all coprime integers m and n,

#(Z/mnZ)× = #(Z/mZ)× ·#(Z/nZ)×.

But this is true by the fact that the former group is isomorphic to the product of the other two. □

Proposition 1.18 (Construction of Multiplicative Functions)

Let f be a multiplicative function. Define g : N → C by g(n) =
󰁓

d|n f(d) (summing over all

factors of n). Then g is also multiplicative.

Proof: Take coprime m,n. We must show g(mn) = g(m)g(n). Then

g(mn) =
󰁛

d|mn

f(d) =
󰁛

d1|m,d2|n

f(d1d2) =
󰁛

d1|m,d2|n

f(d1)f(d2) =

󰀳

󰁃
󰁛

d1|m

f(d1)

󰀴

󰁄

󰀳

󰁃
󰁛

d2|n

f(d2)

󰀴

󰁄

but this is exactly g(m)g(n), as required. □

Proposition 1.19 (Properties of φ)

If p is prime, and k ∈ N, then φ(pk) = pk − pk−1.

For any N ∈ N, φ(N) = N
󰁔

p prime |N

󰀓
1− 1

p

󰀔
.

Also, for any N ∈ N,
󰁓

d|N φ(d) = N .
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Proof: Firstly, φ(pk) = #
󰀋
1 󰃑 a 󰃑 pk with (a, pk) = 1

󰀌
. For all members of this set, p ∤ a. So

this is the set of nonmultiples of p, of which there are pk−1.

Secondly, we can write N =
󰁔r

i=1 p
ki
i , where distinct.

Thirdly, define g(n) =
󰁓

d|n φ(d). This is multiplicative. We want to show that g(n) = n for all
n. Since both sides are multiplicative, it’s enough to check this when n is a prime power. We can
check this easily:

g(pk) =
󰁛

d|pk

φ(d) =

k󰁛

i=0

φ(pi) = 1 +

k󰁛

i=1

(pi − pi−1) = pk

which means this property holds for all prime powers, and thus for all n. □

1.4 Polynomials and Cyclic Groups

If n ∈ N, then a polynomial over Z/NZ is an expression f(X) = anX
n + an−1X

n−1 + · · · + a0,
where ai ∈ Z/NZ. These can be summed and multiplied as usual. We write Z/NZ[X] for the set
of such polynomials in X: note that this is also a ring.

If f(X) is such a polynomial, and x ∈ Z/NZ, then we write f(a) = anx
n + · · ·+ a0, which is just

a sum of integers in this ring. We say the solutions to the equation f(X) = 0 in the ring are the
elements such that f(a) ≡ 0 (mod N).

Example 1.20 (Solutions to Polynomials)

The equation X2 + 2 = 0 in Z/5Z has no solutions. (Proof by exhaustion).

The equation X3 + 1 = 0 in Z/7Z has the solutions {3, 5, 6}.

The equation X2 − 1 = 0 in Z/8Z has the solutions {1, 3, 5, 7}.

In this last case, note that the polynomial has degree 2, but four solutions. In fact, this is
only possible because 8 is not prime.

Theorem 1.21 (Lagrange’s Theorem)

Let p be a prime, and f(x) ∈ Z/pZ[X] be a polynomial of degree n with an ∕≡ 0 (mod p).
Then f(X) = 0 has at most n solutions.

Proof: We use induction on the degree of the polynomial n. Certainly, the base case n = 0 works:
if f(X) = a0 ∕≡ 0 (mod p), then there are no solutions.

Now suppose n > 0. If there are no solutions, then we are done. Now suppose there is a solution
a. Then note that for all j 󰃍 1, we have Xj − aj = (X − a)(Xj−1 + aXj−2 + · · · + aj − 1). So
f(X) = f(X)− f(a) = (X − a)g(X), where g is another polynomial with leading term anX

n−1.

Suppose b is a solution of f(X) = 0. Then 0 ≡ f(b) ≡ (b− a)g(b) (mod p). So either (b− a) ≡ 0
(mod p), or not, in which case g(b) ≡ 0 (mod p). This step uses the primality of p.

If so, then b would also be a solution of g. By induction, there are at most n− 1 of these. So there
are at most n total, now including a. □

Theorem 1.22 (Prime Cyclic Groups)

Let p be a prime. Then (Z/pZ)× is cyclic.
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Proof: Let G = (Z/pZ)×. Then |G| = p− 1. We know that

󰁛

d|p−1

φ(d) = p− 1 and ord(g) | p− 1∀g ∈ G

Then p− 1 is equal to the sum of Nd over divisors d of p− 1, where Nd is the number of elements
in G with order exactly d.

G is cyclic if and only if Np−1 is non-zero. Suppose for a contradiction that this is not true. Then

󰁛

d|p−1

φ(d) =
󰁛

d|p−1,d ∕=p−1

Nd

so we must have Nd > φ(d) for some d | p− 1.

Take this d. Then take some element a ∈ G of order d, and consider the subgroup 〈a〉 generated
by a: it is cyclic and has d elements.

We have seen previously that any cyclic group of d elements has φ(d) elements of order d. So there
must exist some element b ∈ G of order d that is not in this group.

The elements of 〈a〉 have order dividing d, so they are all solutions to the polynomial Xd − 1 = 0
in Z/pZ. b is also a solution to this polynomial congruence.

But then there would be d+1 distinct solutions to a polynomial equation of degree d. This would
contradict Lagrange’s Theorem (1.21), and therefore (Z/pZ)× is cyclic. □
Note: This group is called the multiplicative group of the finite field of Z modulo p. It is a cyclic
group, and it has p− 1 elements, so in fact it is isomorphic to Cp−1.

Definition 1.23 (Primitive Root)

If p is a prime, and a is an integer, we say a is a primitive root modulo p if (a, p) = 1 and a
(mod p) generates the group (Z/pZ)×.

How can we find such primitive roots?

Example 1.24 (Primitive Root)

Take p = 7. Then for example:

2 → 4 → 1 → 2 → 4 → 1 is not a primitive root.

3 → 2 → 6 → 4 → 5 → 1 is a primitive root!

In fact, the primitive roots modulo 7 are only 3 and 5.

Now, take p = 19. We want to know whether a = 2 is a primitive root modulo 19. We set
d as the order of 2 mod 19 in the group (Z/19Z)×. We know that d divides the order of the
group, which is 18. Note that d = 18 ⇐⇒ 2 is a primitive root mod 19.

d = 18 ⇐⇒ d ∤ 9 ∧ d ∤ 6 ⇐⇒ 29 ∕≡ 1 ∧ 26 ∕≡ 1 (mod 19).

Then, we can check 26 = 64 ≡ 7 (mod 19), so 29 ≡ 56 ≡ 18 (mod 19).

This means 2 is a primitive root modulo 19.

Corollary: In general, for primes p, if a ∈ Z is such that (a, p) = 1, then a is a primitive root if
and only if a(p−1)/q ∕≡ 1 (mod p) for every prime q | p− 1.
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Remark 1.25 (Difficulty of Finding Primitive Roots)

In general, carrying out this test is hard: it requires knowledge of the prime factorisation of
p− 1. There is no known polynomial-time algorithm to find a primitive root modulo p.

However, if the Generalised Riemann Hypothesis is true, then

∃c > 0 s.t. ∀ primes p, ∃a : 1 < a < c ln(p)6

where a here is a primitive root modulo p.

Now, we consider (Z/pkZ)×, where p is a prime and k ∈ N.

Proposition 1.26 (Prime Power Generators)

Let p be an odd prime, k ∈ N, and x, y ∈ Z. Then

x ≡ 1 + pky (mod pk+1) =⇒ xp ≡ 1 + pk+1y (mod pk+2).

Moreover, we have:

(1 + py)p
k

≡ 1 + pk+1y (mod pk+2).

Proof: Firstly, write x = 1 + pky + pk+1z for some z. Then

xp =
󰀃
1 + pky

󰀄p
+

p󰁛

j=1

󰀕
p

j

󰀖󰀃
1 + pky

󰀄p−j 󰀃
pk+1z

󰀄j

Each summand is then divisible by pk+2. If 0 < j < p, then

p |
󰀕
p

j

󰀖
=⇒ pk+2 |

󰀕
p

j

󰀖
pk+1

Also, pk+2 | pp(k+1) | the summand for which j = p.

So we can assume that x = 1 + pky. Then the sum becomes

xp =
󰀃
1 + pky

󰀄p
= 1 + pk+1y +

p󰁛

j=2

󰀕
p

j

󰀖󰀃
pky

󰀄j

Each summand is still divisible by pk+2, so the result holds, given p 󰃍 3.

We can apply this part k times to get the second result. □

Theorem 1.27 (Cyclic Groups)

If p is an odd prime, then (Z/pkZ)× is cyclic.

Proof: Assume k 󰃍 2. Then #(Z/pkZ)× = φ(pk) = pk − pk−1 = pk−1(p− 1).

Let d be the order of a mod pk. Then d | (p− 1)pk−1, so we must show it is equal to this quantity.

Note that there is a surjective homomorphism (Z/pkZ)× → (Z/pZ)× which sends b + pkZ to
b+ pZ. The image of a+ pkZ under this homomorphism is p− 1 by assumption. Then (p− 1) | d,
so d = (p− 1)pj for some 0 󰃑 j < k.

Now let x = ap−1 = 1 + py for some y ∈ Z coprime to p. The order of x mod pk in the group

(Z/pkZ)× is pj . We must show that x has order pk−1 modulo pk, or equivalently that xpk−2 ∕≡ 1
(mod pk).
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If k = 2, we want x ∕≡ 1 (mod p2), which is true by assumption. So take k 󰃍 3, ie. k − 2 󰃍 1.

Then by Proposition 1.26, we know that

xpk−2

= (1 + py)p
k−2

≡ 1 + pk−1y ∕≡ 1 (mod p)

Let b ∈ Z be a primitive root modulo p. If bp−1 ∕≡ 1 (mod p2), we’re done, so assume that it is.
Take a = (1 + p)b. Then a ≡ b (mod p), so a is a primitive root mod p. We have

ap−1 = (1 + p)p−1bp−1 ≡ 1 + p(p− 1) ≡ 1− p ∕≡ 1 (mod p2)

□

Example 1.28 (Primitive Roots and Generators)

We saw that 3 is a primitive root modulo 7. Does it generate (Z/7kZ)× for all k 󰃍 1?

This holds if 36 ∕≡ 1 (mod 49). In fact, 36 = 729 ≡ 43 (mod 49). So in fact it does generate
all of these groups!

Remark 1.29 (Why “Odd” Prime?)

Many statements in this section have referred to p being an odd prime. In fact, this is for a
good reason: not every result carries over for p = 2, the only even prime. For example:

(1 + py)p
k

≡ 1 + pk+1y (mod pk+2)

is actually false when p = 2 and k = 1, as 9 ∕≡ 4 (mod 8).

However, it does hold when p = 2 and k 󰃍 2. The group

󰀋
x+ 2kZ ∈ (Z/2kZ)× : x ≡ 1 (mod 4)

󰀌

is cyclic, and is generated by 5 + 2kZ.
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2 Quadratic Reciprocity

Having studied the prime numbers, we move on to quadratic reciprocity, first introducing a new
way in which to analyse squares modulo p.

Definition 2.1 (Quadratic Residue)

Let p be a prime and a an integer such that (a, p) = 1. Then we say that a is a quadratic
residue modulo p if

∃x ∈ Z/pZ s.t. x2 − a = 0,

and a quadratic non-residue otherwise. Equivalently, a is a quadratic residue mod p if and
only if a+ pZ is a square in (Z/pZ)×.

Note: Suppose p = 7. Then, since 12 ≡ 62 ≡ 1, 22 ≡ 52 ≡ 4, and 32 ≡ 42 ≡ 2 modulo 7, the
quadratic residues modulo 7 are precisely 1, 2, and 4.

Proposition 2.2 (Number of Quadratic Residues)

If p is an odd prime, then there are precisely p−1
2 quadratic residues modulo p.

Proof: Consider the map σ : (Z/pZ)× → (Z/pZ)×, x 󰀁→ x2. We need to show that the image of σ
has p−1

2 elements, so it suffices to show that the preimage of each class has exactly two elements.

if x, y ∈ (Z/pZ)× and x2 ≡ y2 (mod y), then (x− y)(x+ y) ≡ 0 (mod p). Thus x ≡ ±y (mod p),
so the preimage of x2 has precisely the two elements {x,−x}. □

Definition 2.3 (Legendre Symbol)

For p an odd prime and a ∈ Z, we write

󰀕
a

p

󰀖
=

󰀻
󰁁󰀿

󰁁󰀽

0 p | a
+1 p ∤ a and a is a quadratic residue mod p

−1 p ∤ a and a is a quadratic non-residue mod p

Proposition 2.4 (Euler’s Criterion)

If p is an odd prime, then 󰀕
a

p

󰀖
≡ a

p−1
2 (mod p).

Proof: If p | a then both sides are 0 modulo p. So assume p ∤ a. If a ≡ x2 (mod p), then
󰀕
a

p

󰀖
= 1 and a

p−1
2 ≡ xp−1 ≡ 1 (mod p)

by the Euler-Fermat Theorem (1.11). If a is a quadratic non-residue, then
󰀕
a

p

󰀖
= −1 and

󰀓
a

p−1
2

󰀔2

≡ ap−1 ≡ 1 (mod p).

Therefore,
󰀓
a

p−1
2

󰀔
≡ ±1 (mod p). We need to show it is not +1.

By Lagrange’s Theorem (1.21) know x
p−1
2 = 0 has at most p−1

2 solutions in Z/pZ. But we also
know there are at least this many solutions, given by the quadratic residues. □
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Corollary: For odd primes p,

󰀕
−1

p

󰀖
= (−1)

p−1
2 =

󰀫
+1 p ≡ 1 (mod 4)

−1 p ≡ 3 (mod 4)

Definition 2.5 (Closest Integer to Zero)

Suppose p is an odd prime and a ∈ Z. Then there is a unique integer b ∈ a + pZ such that
−p/2 < b < p/2.

We write 〈a〉 = b for this integer.

Theorem 2.6 (Gauss’s Lemma)

Let p be an odd prime and a a coprime integer. Then

󰀕
a

p

󰀖
= (−1)µ where µ = # {j ∈ Z : 0 < j < p/2, 〈ja〉 < 0}

Proof: Consider the expressions

󰀕
p− 1

2

󰀖
! ≡

p−1
2󰁜

j=1

j and

󰀕
p− 1

2

󰀖
! ≡

p−1
2󰁜

j=1

aj.

These represent each side of the inequality respectively. □

Definition 2.7 (Floor)

For x ∈ R, the floor of x is defined as

⌊x⌋ = sup {n ∈ Z : n 󰃑 x} .

Note: For x ∈ Z, ⌊x⌋ = x. Also, for all x ∈ R, we have x− 1 < ⌊x⌋ 󰃑 x.

Example 2.8 (Evaluating Legendre Symbols)

Let’s try and evaluate one of these expressions. We know that

󰀕
3

p

󰀖
= (−1)µ where µ = #

󰁱
j ∈ Z : 0 < j <

p

2
, 〈3j〉 < 0

󰁲

We can assume p > 3, since the other cases are trivial to compute.

If 0 < j < p/6, then 0 < 3j < p/2, so 〈3j〉 > 0.

If p/6 < j < 2p/6, then p/2 < 3j < p, so 〈3j〉 < 0.

Finally, if 2p/6 < j < 3p/6, then p < 3j < 3p/2, so 〈3j〉 > 0.

So only the second case contributes! Thus we can write

󰀕
3

p

󰀖
= (−1)µ where µ = #

󰁱
j ∈ Z :

p

6
< j <

p

3

󰁲
=

󰁭p
3

󰁮
−
󰁭p
6

󰁮
.

So this is the value of the Legendre symbol in closed form!
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Suppose we take a ∈ Z, p ∤ a a prime. Then by definition, 〈aj〉 = aj − pc, where c is the unique
integer such that −p/2 < aj − pc < p/2. We can then express µ as the number of elements in:

󰀋
(b, c) ∈ Z2 : 0 < b < p/2, −p/2 < ab− pc < 0

󰀌
.

Theorem 2.9 (Law of Quadratic Reciprocity)

Suppose p and q are distinct odd primes. Then

󰀕
p

q

󰀖󰀕
q

p

󰀖
= (−1)(

p−1
2 )( q−1

2 )

Equivalently, we can express them in terms of each other:

󰀕
p

q

󰀖
=

󰀻
󰀿

󰀽
−
󰀓

q
p

󰀔
p ≡ q ≡ 3 (mod 4)

󰀓
q
p

󰀔
otherwise

Proof: By Gauss’s Lemma, we have
󰀕
q

p

󰀖
= (−1)|A| where A =

󰁱
(b, c) ∈ Z2 : 0 < b <

p

2
,−p

2
< qb− pc < 0

󰁲

Similarly, we have
󰀕
p

q

󰀖
= (−1)|B| where B =

󰁱
(b, c) ∈ Z2 : 0 < b <

q

2
,−q

2
< pb− qc < 0

󰁲

= (−1)|C| where C =
󰁱
(b, c) ∈ Z2 : 0 < c <

q

2
, 0 < qb− pc <

q

2

󰁲

by renaming. Now let S =
󰀋
(b, c) ∈ Z2 : 0 < b < p/2, 0 < c < q/2

󰀌
. Then the size of S is precisely

the exponent in the right hand size of the equality we want to demonstrate.

|S| = p− 1

2
× q − 1

2
.

We claim that A and C are disjoint subsets of S.

If the tuple (b, c) ∈ A, then 0 < b < p/2, and pc > qb, so c > qb/p > 0. Moreover, pc < qb+ (p/2),
so c < (qb/p) + (1/2) < (q + 1)/2. Since c ∈ Z, c < q/2, so (b, c) ∈ S, ie. A ⊆ C.

By the same argument, C ⊆ S. We now need to show them to be disjoint. This is clear, as
qb− pc < 0 within A but is positive within C.

Now, we must show that (−1)|A|+|C| = (−1)|S|. We will show that |S \ (A ∪ C)| is even. Take
X = {(b, c) ∈ S : qb− pc < −p/2} Y = {(b, c) ∈ S : qb− pc > q/2}

Note that A,C,X, and Y are pairwise disjoint, and that S \ (A ∪ C) = X ∪ Y (the four cover the
set). We aim to show that |X ∪ Y | is even, so it suffices to show |X| = |Y |.

Let f : S → S be the function

(b, c) 󰀁→
󰀕
p+ 1

2
− b,

q + 1

2
− c

󰀖

This is a bijection. We will show that f(X) ⊆ Y and f(Y ) ⊆ X.

Suppose (b, c) ∈ X. Then qb− pc < −p/2, and −qb+ pc > p/2. Then

q

󰀕
p+ 1

2
− b

󰀖
− p

󰀕
q + 1

2
− c

󰀖
=

q

2
− qb− p

2
+ pc >

q

2
=⇒ f(b, c) ∈ Y.

A similar argument holds to show (b, c) ∈ Y =⇒ f(b, c) ∈ X.

Thus |X| = |Y |, so the law holds. □
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Example 2.10 (Evaluating Legendre Symbols again)

Let’s now evaluate the Legendre symbol

󰀕
3

p

󰀖
where p > 3 is a prime.

By the Law of Quadratic Reciprocity (Theorem 2.9), we have

󰀕
3

p

󰀖
=

󰀫󰀃
p
3

󰀄
p ≡ 1 (mod 4)

−
󰀃
p
3

󰀄
p ≡ 3 (mod 4)

From the previous example (2.8), we know that

p ≡ 1 (mod 3) =⇒
󰀓p
3

󰀔
= 1 p ≡ 2 (mod 3) =⇒

󰀓p
3

󰀔
= −1

By the Chinese Remainder Theorem (1.14), we can convert these congruences modulo 4 and
3 into a single congruence modulo 12, which is

󰀕
3

p

󰀖
=

󰀫
+1 p ≡ ±1 (mod 12)

−1 p ≡ ±5 (mod 12)

This is a closed-form solution to the Legendre symbol!

Example 2.11 (Quadratic Solutions)

Does X2 − 19 = 0 have a solution in Z/73Z? Well, since 73 is prime:

󰀕
19

73

󰀖
=

󰀕
73

19

󰀖
=

󰀕
16

19

󰀖
= 1 (as 16 = 42).

So there is a solution, as this is the definition of the Legendre symbol being 1.

In fact, 262 = 676 = 9× 73 + 19, and 472 = 2209 = 30× 73 + 19, so these are our solutions.
They are the only two solutions, and 26 + 47 = 73.

Example 2.12 (Computing Large Legendre Symbols)

Given that 7411 and 9283 are prime and both congruent to 3 modulo 4,

󰀕
7411

9283

󰀖
= −

󰀕
9283

7411

󰀖
= −

󰀕
1872

7411

󰀖

We have 1872 = 24 × 32 × 13, so this is equal to

−
󰀕
1872

7411

󰀖
=

󰀕
13

7411

󰀖
= −

󰀕
1

13

󰀖
= −1.

So even moderately large numbers lend themselves to quick computing, as long as we can use
their factorisation to simplify the appropriate Legendre symbol.

What if we don’t have a nice factorisation of our number on hand? It would still be convenient to
compute Legendre symbols easily.

To accomplish this, we need to extend the definition of the symbol.
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2.1 Jacobi Symbols

We now define a variation of the Legendre symbol, which holds even when p is not a prime.

Definition 2.13 (Jacobi Symbol)

Let N ∈ N be odd, with a ∈ Z. Then we define the Jacobi symbol

N =

k󰁜

i=1

prii =⇒
󰀓 a

N

󰀔

Jacobi
=

k󰁜

i=1

󰀕
a

pi

󰀖ri

Legendre

These agree when N is a prime. Note that when N is not a prime, the Jacobi symbol does
not tell you whether a has a square in Z/NZ.

Note: We sometimes write (a/N) for the Jacobi symbol. Since division is not really considered
when working in the ring of integers, this is not ambiguous.

If N = 1, then (a/N) = 1. If (a,N) > 1, then (a/N) = 0, as there is a p dividing a and N .

Generally, if N = pq, then (a,N) = 1 =⇒ a (mod N) ∈ (Z/NZ)× ∼= (Z/pZ)× × (Z/qZ)×. So
squares modulo N are also squares modulo p and q, by the Chinese Remainder Theorem (1.14).
Equivalently, a mod N = pq is a square if and only if (a/p) = (a/q) = 1.

Now, consider that the product of these two symbols is equal to (a/N). If this is 1, then either
both are 1 (and the condition is satisfied), or both are −1.

Corollary: (a/N) = 1 is necessary but insufficient to ensure that a is a square mod N .

Proposition 2.14 (Jacobi Multiplicity)

Let M and N be odd, with a and b integers. Then

1. a ≡ b (mod N) =⇒ (a/N) = (b/N). Only the residue modulo N matters.

2. (ab/N) = (a/N) · (b/N). That is, the first argument is multiplicative.

3. (a/MN) = (a/M) · (a/N). That is, the second argument is also multiplicative.

Proof: It is fairly simple to show all of these properties.

1. If a ≡ b (mod N), then a ≡ b (mod pj) for all pj | N . This means (a/pj) = (b/pj) for all
j. Since these symbols only depend on the congruence class of the top modulo the bottom,
they are the same, so the result holds.

2. This follows from the definition, writing N out as a product of primes.

3. This follows from the definition, writing N and M out as a product of primes.

So all three of these properties carry over from Legendre symbols. □

Proposition 2.15 (Jacobi Symbols)

If N is odd, then 󰀕
−1

N

󰀖
= (−1)

N−1
2 and

󰀕
2

N

󰀖
= (−1)

N2−1
8

Proof: It’s easy to check that these identities hold when N is prime, and when N = LM for odd
integers L and M in general. □
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These properties are useful, but what made the Legendre symbol powerful is quadratic reciprocity.
Does this carry over to Jacobi symbols? In fact, the answer is yes!

Theorem 2.16 (Law of Quadratic Reciprocity for Jacobi symbols)

Let M,N ∈ N be odd. Then

󰀕
M

N

󰀖
= (−1)(

M−1
2 )(N−1

2 )
󰀕
N

M

󰀖

Furthermore, if M and N are coprime, then this means

󰀕
M

N

󰀖
·
󰀕
N

M

󰀖
= (−1)(

M−1
2 )(N−1

2 )

Proof: Let M = p1 × · · ·× pk and N = q1 × · · ·× qℓ. Then

󰀕
M

N

󰀖
=

k󰁜

i=1

ℓ󰁜

j=1

󰀕
pi
qj

󰀖
=

k󰁜

i=1

ℓ󰁜

j=1

(−1)(
pi−1

2 )
󰀓

qj−1

2

󰀔 󰀕
qj
pi

󰀖

By combining the products into sums, we see that this is equal to

(−1)β ×
k󰁜

i=1

l󰁜

j=1

󰀕
qj
pi

󰀖
where β =

k󰁛

i=1

l󰁛

j=1

󰀕
pi − 1

2

󰀖󰀕
qj − 1

2

󰀖

where the last term in the multiplication is the Jacobi symbol for N on M .

Now, we must show that the sum is congruent to
󰀃
M−1

2

󰀄 󰀃
N−1
2

󰀄
modulo 2. But we have previously

showed this, so in fact quadratic reciprocity carries over. □
Note: The exponents really are fractions, not Jacobi symbols!

Using these results, we can now compute Jacobi symbols without factorising the numerator:

󰀕
33

73

󰀖
=

󰀕
73

33

󰀖
=

󰀕
7

33

󰀖
=

󰀕
33

7

󰀖
=

󰀕
5

7

󰀖
=

󰀕
7

5

󰀖
=

󰀕
2

5

󰀖
= −1.

So the law of quadratic reciprocity, as defined and proved for Legendre symbols in 2.9, is preserved
when discussing Jacobi symbols.
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3 Quadratic Forms

Our motivating question for this section is “can n ∈ N be expressed as x2 + y2 for integers x, y?”
Then, we ask the same question for x2 + 2y2, x2 + 3y2, and so on.

Theorem 3.1 (Fermat-Euler Theorem)

Let p be an odd prime. Then the following are equivalent:

1. p = x2 + y2 for some x, y ∈ Z.

2. −1 + pZ ∈ (Z/pZ)× is a square.

3. p ≡ 1 (mod 4).

More generally, if N ∈ N, then N = x2 + y2 if and only if for every p congruent to 3 mod 4,
if pk | N but pk+1 ∤ N , then k is even.

Definition 3.2 (Binary Quadratic Form)

A binary quadratic form is a polynomial f(x, y) = ax2 + bxy + cy2, with a, b, c integers. We
then say that f represents N if there are integers m,n such that f(m,n) = N .

We often identify f with the tuple of coefficients (a, b, c) or the matrix

f ∼
󰀕

a b/2
b/2 c

󰀖
=⇒ f(x, y) =

󰀃
x y

󰀄󰀕 a b/2
b/2 c

󰀖󰀕
x
y

󰀖
.

We will study these forms and how they behave under a change of variables. We need to restrict
which changes are allowed.

Definition 3.3 (Unimodular Change of Variables)

A unimodular change of variables is of the form X = αx+ γy, Y = βx+ δy, where

α,β, γ, δ ∈ Z αδ − βγ = 1

Equivalently, this is the form (X,Y ) = (x, y)A, where A ∈ SL2(Z):

SL2(Z) =
󰀝󰀕

α β
γ δ

󰀖
∈ M2(Z) : αδ − βγ = 1

󰀞

Two binary quadratic forms f and g are called equivalent if there exists a unimodular change of
variables such that

g(x, y) = f(X,Y ) = f(αx+ γy,βx+ δy)

Remember that the special linear group SL2(Z) is indeed a group: it is closed under multiplication,
matrix multiplication is associative, and inverses are given by

󰀕
α β
γ δ

󰀖−1

=

󰀕
δ −β
−γ α

󰀖
∈ SL2(Z)

This group acts on the set of binary quadratic forms by the formula

(Af)(x, y) = f((x, y)A)

Then two forms are equivalent if they are in the same orbit under this action. In particular, this
demonstrates that equivalence of forms really is an equivalence relation, as orbits partition a set.
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3.1 Positive Definite Binary Quadratic Forms

We now consider a property of binary quadratic forms, and relate it to equivalence.

Definition 3.4 (Discriminant)

The discriminant of a binary quadratic form f(x, y) = ax2 + bxy + cy2 is

disc f = b2 − 4ac

Proposition 3.5 (Equivalence of Forms)

Let f and g be equivalent binary quadratic forms. Then

1. f and g represent the same integers.

2. disc f = disc g.

Proof: If g represents N , then N = g(m,n) = f(αm+ γn,βm+ δn), so f represents g too. The
converse also holds, since these matrices are invertible in SL2(Z).

Now let Mf be the matrix associated with f , so that detMf = ac− b2/4 = −(disc f)/4. Then

f(x, y) = (x, y)Mf (x, y)
⊤ = (x, y)AMfA

⊤(x, y)⊤ =⇒ Mg = AMfA
⊤

Thus detMg = detMf , and so disc g = disc f . □
Note: The discriminants of two forms being the same is not a sufficient condition for them to be
equivalent. For example,

f(x, y) = x2 + 6y2 g(x, y) = 2x2 + 3y2

both have discriminant −24, as disc f = −4 · 1 · 6 = −4 · 2 · 3 = disc g. However f represents 1 via
f(1, 0) = 1, while g clearly cannot (as the smallest non-zero number it can represent is 2).

Proposition 3.6 (Only Certain Discriminants Possible)

Let d ∈ Z. Then there exists a binary quadratic form f with disc f = d if and only if d is
congruent to either 0 or 1 modulo 4.

Proof: (⇒) disc f = b2 − 4ac ≡ b2 (mod 4), and the only squares modulo 4 are 0 and 1.

(⇐) For d congruent to 0 mod 4, take f(x, y) = x2 − (d/4)y2.

For d congruent to 1 mod 4, take f(x, y) = x2 + xy − ((d− 1)/4)y2. □

Definition 3.7 (Definite)

Let f(x, y) be a binary quadratic form. Then

1. f is positive definite if for all (u, v) ∈ R2 \ {0} , f(u, v) > 0.

2. f is negative definite if for all (u, v) ∈ R2 \ {0} , f(u, v) < 0.

3. f is indefinite if it is non-zero and neither positive nor negative definite.

In particular, every non-zero binary quadratic form is either positive definite, negative definite, or
indefinite. From now on, we mostly focus our attention on positive definite binary quadratic forms,
or PDBQFs for short.
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Proposition 3.8 (Definite)

If f(x, y) = ax2 + bxy + cy2 is a binary quadratic form, with disc f = d. Then

(a) If d < 0, then a ∕= 0. f is positive definite if a > 0, and negative definite otherwise.

(b) If d > 0, then f is indefinite.

(c) If d = 0, then there are integers l,m, n ∈ Z such that f = l(mx+ ny)2.

Proof: First, notice that

4a · f(x, y) = 4a2x2 + 4abxy + 4acy2

= (2ax+ by)2 + (4ac− b2)y2 = (2ax+ by)2 − dy2

(a) If a = 0, then d = b2−4ac = b2 ∕< 0. Then the RHS of the above expression is positive definite.

(b) If d > 0, then the RHS is indefinite, so f(x, y) is too. The same holds for c ∕= 0 and d > 0.

In the case where a = c = 0, f is clearly indefinite, as b ∕= 0.

(c) If d = 0, then b2 = 4ac. Write a = a1(a2)
2, where a1 is squarefree.

Then b2 = 4a1a
2
2c, so we have (2a2)

2 | b2 and thus 2a2 | b.

But then (b/2a2)
2 = a1c, and so a1 | (b/2a2)2 (as a1 is squarefree). Then 2a1a2 | b, so

f(x, y) = a1a
2
2x

2 + bxy + cy2 = a1

󰀕
a2x+

b

2a1a2
y

󰀖2

󰁿 󰁾󰁽 󰂀
desired form

+

󰀕
c− b2

4a

󰀖

󰁿 󰁾󰁽 󰂀
=0

y2

In the case where a = 0, then b = 0, so f(x, y) = cy2 = 1(0x+ cy)2. □
Now, we turn our attention to PDBQFs. If f(x, y) = ax2 + bxy+ cy2 is a PDBQF, can we find an
equivalent form with smaller coefficients? More generally, is there some canonical representative
for the equivalence class of f?

Example 3.9 (Reducing Coefficients)

Take f(x, y) = 10x2 + 34xy + 29y2, or (1, 34, 29). Consider the actions of various elements of
SL2(Z) on f .

If Tλ =

󰀕
1 0
λ 0

󰀖
, then (Tλ · f)(x, y) = ax2 + (b+ 2λa)xy + (c+ λb+ λ2a)y2. So

T+1 : (a, b, c) 󰀁→ (a, b+ 2a, c+ b+ a)

T−1 : (a, b, c) 󰀁→ (a, b− 2a, c− b+ a)

Using these matrices repeatedly, we can get

(10, 34, 29)
T−1−→ (10, 14, 5)

T−1−→ (10,−6, 1)

Also, we can consider S =

󰀕
0 1
−1 0

󰀖
∈ SL2(Z). Notice that S : (a, b, c) 󰀁→ (c,−b, a). Now

(10,−6, 1)
S−→ (1, 6, 10)

T−1−→ (1, 4, 5)
T−1−→ (1, 2, 2)

T−1−→ (1, 0, 1)

Thus the PDBQF f(x, y) = 10x2 + 34xy + 29y2 is equivalent to x2 + y2.
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Note: We say that f is reduced if −a < b 󰃑 a 󰃑 c, and if a = c then b 󰃍 0. Equivalently, f is
reduced if |b| 󰃑 a 󰃑 c, and if either inequality is an equality, then b 󰃍 0.

Proposition 3.10 (Reduction is Possible)

Every PDBQF is equivalent to a reduced PDBQF.

Proof: Start with f = (a, b, c) and consider the following algorithm:

1. If a > c, replace f by S · f .

2. If |b| > a, replace f by T±1 · f , depending on the sign of b.

3. Keep doing this until you satisfy the conditions.

This terminates in a finite number of steps, as a+ |b| decreases with each step.

After running this algorithm, notice that a 󰃑 c as required, and |b| 󰃑 a 󰃑 c. We are then done,
except in the cases where |b| = a or a = c. If a = c, then f = (a, b, a), so if b < 0 we can take
S · f = (a,−b, a). Otherwise, either f = (a, a, c) is reduced or f = (a,−a, c) is not reduced. In the
latter case, take T1 · f , which is reduced. □

Proposition 3.11 (Reduced PDBQF Inequalities)

If f = (a, b, c) is a reduced PDBQF, then

|b| 󰃑 a 󰃑
󰁵

1

3
|disc f | and b ≡ disc f (mod 2)

Proof: Since f is reduced, |b| 󰃑 a 󰃑 c. Thus

|disc f | = 4ac− b2 󰃍 4a2 − a2 = 3a2 =⇒ a 󰃑
󰁵

1

3
|disc f |

Also, disc f ≡ b2 ≡ b modulo 2. □
Suppose f = (a, b, c) is a reduced PDBQF of discriminant −4. Then |b| 󰃑 a 󰃑

󰁳
4/3, so a = 1 and

b is even, so b = 0. Then d = −4 = b2 − 4ac = −4c, so c = 1, and f(x, y) = x2 + y2. This means
that there is only one reduced PDBQF of discriminant −4!

Corollary: Since every PDBQF is equivalent to some reduced form, and equivalent forms have
the same discriminant, every PDBQF of discriminant −4 is equivalent.

Proposition 3.12 (Represented Primes)

If p is a prime congruent to 1 modulo 4, then p is represented by x2 + y2.

Proof: Since p ≡ 1 modulo 4, we have
󰀕
−1

p

󰀖
= 1 =⇒ ∃ k, l ∈ Z s.t. k2 = −1 + lp

This means that (2k)2 = −4 + 4lp, so −4 = (2k)2 − 4lp.

The PDBQF f = (p, 2k, l) = px2 + 2kxy + ly2 has disc f = −4. It then has an equivalent reduced
form of discriminant −4, which must be x2 + y2 by the above corollary.

But f(1, 0) = p, so f represents p. So x2 + y2 does too, as desired. □
This is a surprising result! Every prime number which is one more than a multiple of 4 is the sum
of two squares.
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Corollary: If d < 0 ∈ Z is congruent to 0 or 1 modulo 4, there are only finitely many reduced
PDBQFs of discriminant d.

Proof: For f reduced, there are only finitely many possible a, b. But then c is fixed. □
Corollary: If d < 0 ∈ Z is congruent to 0 or 1 modulo 4, there are only finitely many equivalence
classes of PDBQFs of discriminant d.

Proof: Obvious by the previous corollary and every class having a reduced representative. □

Definition 3.13 (Class Number)

For negative integers d ≡ 0 or 1 mod 4, we define the class number h(d) to be the number of
equivalence classes of PDBQFs with discriminant d.

We have computed this to be 1 in the case of d = −4. In fact, h(d) 󰃍 1 for all d: choose x2 − d
4y

2

or x2 + xy + 1−d
4 y2 as appropriate.

Definition 3.14 (Proper Representation)

An integer N ∈ Z is properly represented by a binary quadratic form f if there are m,n ∈ Z
with (m,n) = 1 such that f(m,n) = N .

Note: This is the same as the original definition of representation given in 3.2, with the added
stipulation that the integers are coprime.

In fact, the properties of representation carry over nicely to proper representation!

Proposition 3.15 (Equivalence of Forms 2)

As well as the properties given in Proposition 3.5, equivalent binary quadratic forms properly
represent the same integers too.

Proof: Suppose we can write g = A · f , where A ∈ SL2(Z), and that g(m,n) = N . We want to
show that f properly represents N as well, which will complete the proof by symmetry.

We get N = g(m,n) = (A · f)(m,n) = f(αm+ γn,βm+ δn). We need to check that this is indeed
a proper representation: that is, (αm+ γn,βm+ δn) = 1.

This is, by definition, (m,n)A. But then (m,n) = (αm+γn,βm+δn)A−1, since SL2(Z) is a group
and thus has inverses. Thus if any d divides both αm+ γn and βm+ δn, then it must also divide
both m and n, since these are linear combinations of αm+ γn and βm+ δn.

But m and n are coprime, so αm + γn and βm + δn are too. Thus f properly represents N , so
proper representation is an equivalence class property. □
Now, we prove some more properties of the values which reduced PDBQFs take.

Proposition 3.16 (Proper Reduction)

Let f = (a, b, c) be a reduced PDBQF. Then:

(i) a 󰃑 c 󰃑 a+ c− |b|.

(ii) f(1, 0) = a and f(0, 1) = c.

(iii) Either f(1, 1) = a+ c− |b| or f(1,−1) = a+ c− |b|.

(iv) If m and n are non-zero integers, then f(m,n) 󰃍 a+ c− |b|.
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Proof: (i) As f is reduced, we have c 󰃍 a 󰃍 |b|. This means a− |b| 󰃍 0, and so a+ c− |b| 󰃍 c.

(ii) f(x, y) = ax2 + bxy + cy2, so f(1, 0) = a+ 0 + 0 and f(0, 1) = 0 + 0 + c as required.

(iii) Also, f(1,±1) = a± b+ c. For one of these values, we therefore obtain a+ c− |b|.

(iv) Suppose first that |m| 󰃍 |n|. Then f(m,n) = am2 + bmn + cn2. This is at least as large as
am2 − |b|m2 + cn2, which is equal to (a− |b|)m2 + cn2.

But since m and n are non-zero integers, their squares are at least 1. Therefore f(m,n) 󰃍 a+c− |b|
whenever |m| 󰃍 |n|. A similar argument works in the opposite case. □
Note: The number of pairs m and n with g(m,n) = N is finite. It is also even, by symmetry: we
can consider g(−m,−n). We can thus take the values taken by g with multiplicity in some order,
or indeed all the values taken when m and n are coprime. This is a non-decreasing sequence where
each integer appears an even number of times. The interpretation of the above is then that if g is
reduced, this list will be a, a, c, c, a+ c− |b|, a+ c− |b|, and then more.

Now, recall Proposition 3.10, which stated that every PDBQF was equivalent to a reduced form.
In fact, we can strengthen this claim: the reduced form is unique!

Theorem 3.17 (Unique Reduction Theorem)

Every PDBQF is equivalent to a unique reduced form.

Proof: From Proposition 3.10, every PDBQF is equivalent to a reduced form. As equivalence of
forms is an equivalence relation, if this form was not unique, then there would exist two distinct
reduced forms which were equivalent to each other. We therefore need to show that if f = (a, b, c)
and g = (a′, b′, c′) are equivalent reduced forms, then they must be equal.

Take the lists of properly represented integers, as described in the above note. These will be the
same for f and g. But then these lists begin the same way, so a = a′, and c = c′, and (since they
must have the same discriminant), b = ±b′.

If b = 0, then we are done, so suppose b ∕= 0. In particular, suppose without loss of generality that
b′ < 0 < b. Then f = (a, b, c) and g = (a,−b, c) are equivalent reduced forms. In particular, the
inequalities c > a > b are strict.

So g(1, 0) = a = (A · f)(1, 0) = f((1, 0)A). By the previous proposition, the only way for this to
be true is if (1, 0)A = (±1, 0). The same logic shows that (0, 1)A = (0,±1). So:

A =

󰀕
±1 0
0 ±1

󰀖
where detA = 1 =⇒ A = ±I the identity matrix.

But ±I does not change a form, since it is quadratic! But then g = f , as required. □
Corollary: The class number (Definition 3.13) h(d) is the number of reduced PDBQFs with a
discriminant of d, yielding an efficient method to compute h(d).

Example 3.18 (Computing Class Numbers)

Let’s find h(−24), noting that −24 ≡ 0 (mod 4), by enumerating the reduced forms (a, b, c)
of discriminant d. These forms have b even, and a 󰃑

󰁳
24/3 < 3, with b2 − 4ac = −24.

If a = 1, then we must have b = 0. Then −4c = −24, so c = 6, yielding (1, 0, 6).

If a = 2, then b = 0 or 2: b = −2 is not allowed, as this would not be reduced. For b = 0, we
have −8c = 24, so c = 3. For b = 2, we have −8c = −28, which has no integer solution.

Thus the only reduced forms of discriminant −24 are (1, 0, 6) and (2, 0, 3): that is, x2 + 6y2

and 2x2 + 3x2. In particular, the class number h(−24) = 2.
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Proposition 3.19 (Proper Representation Condition)

Let f be a binary quadratic form, and N ∈ Z. Then f properly represents N if and only if f
is equivalent to a form (N, b, c) for some integers b and c.

Proof: (⇐) Proper representation is preserved under equivalence. But Nx2 + bxy + cy2 properly
represents N , for example with (1, 0).

(⇒) Suppose f(m,n) = N for coprime m and n. Then we can find u and v with um+ vn = 1. So:

A =

󰀕
m n
−v u

󰀖
∈ SL2(Z) (since detA = um+ vn = 1).

But if g = A · f , then g(1, 0) = f((1, 0)A) = f(m,n) = N by assumption. □

Theorem 3.20 (Proper Representation)

Let d ∈ Z with d < 0 and d ≡ 0 or 1 modulo 4 be some valid discriminant. Then the following
conditions are equivalent:

1. N is properly represented by a PDBQF of discriminant d.

2. The equation X2 = d has a solution in Z/4NZ.

Proof: (1 ⇒ 2) By the above proposition, there exists some form (N, b, c) of discriminant d. But
then b2 − 4Nc = d by definition, so b2 ≡ d modulo 4N as required.

(2 ⇒ 1) Suppose we have b with b2 ≡ d modulo 4N , so b2 = d+4NC. Then the form (N, b, c) has
discriminant d. Also, this form is positive definite, as d < 0 < N . □
Let’s use this theorem to study a particular PDBQF.

Example 3.21 (x2 + xy + 2y2)

Which integers are represented by x2+xy+2y2? This form has discriminant d = 1−8 = −7,
so we must find the reduced forms of discriminant −7.

These have b odd, and |b| 󰃑 a 󰃑
󰁳
7/3 < 2, so a = |b| = 1. Since the form is reduced, b = 1,

and so c = 2: in fact, this is our original form! Therefore this is the only reduced form with
discriminant −7, and any two forms of this discriminant are equivalent.

So by the above theorem, N is properly represented by x2 + xy+ 2y2 if and only if X2 ≡ −7
has a solution modulo 4N .

Suppose N = p is prime. If p = 2, we want X2 ≡ 1 (mod 8). This works when X = 3, so yes,
2 is represented. (Trivially, (0, 1) represents this value.)

If p is odd, then the Chinese Remainder Theorem (1.14) gives an equivalent condition: we
need to solve X2 ≡ −7 modulo 4 and modulo p. This works modulo 4, so we just need some
solution to X2 ≡ −7 (mod p).

Obviously, this works if p = 7. For p ∕= 7, we require the Legendre symbol (−7/p) = 1, which
by quadratic reciprocity (Theorem 2.9) is (p/7), to be 1.

Equivalently, we require p = 0, 1, 2, or 4 modulo 7.

Note: In this example, we answered the question for N = p a prime. We now build up to being
able to do this for arbitrary integers, which are not necessarily prime.
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Proposition 3.22 (Proper Representation and Legendre Symbols)

Let p be an odd prime with a ∈ Z. Then if the Legendre symbol (a/p) = 1, then X2 = a has
a solution in Z/pkZ for all k.

Moreover, if a ≡ 1 (mod 8), then the equation X2 = a has a solution in Z/2kZ for all k.

Proof: We use induction on k 󰃍 1, since the base case of k = 1 holds by definition of the Legendre
symbol. Suppose that there is some b ∈ Z with b2 ≡ a (mod pk), or equivalently that there is some
c ∈ Z with b2 = a+ pkc.

Then (b+pkx)2 = b2+2bpkx+p2kx2 = a+pk(c+2bx)+p2kx2. This last term is clearly a multiple
of pk+1, so in fact we merely require p | (c + 2bx). Equivalently, if 2bx ≡ −c (mod p). This is
possible if (p, 2b) = 1. But this is true, since p ∤ 2 and p ∤ b, since a ∕≡ 0 (mod p) by the Legendre
symbol, and so b ∕≡ 0 (mod p). This proves the first part of the proposition.

Now we use induction again. For k 󰃑 3, this has a solution by assumption. Suppose b ∈ Z is such
that b2 = a (mod 2k), where k is at least 3. Then there exists some c ∈ Z with b2 = a+ 2kc. If c
is even, then b2 ≡ a (mod 2k+1) as required, so take c odd.

Then b is odd, since b2 ≡ a ≡ 1 (mod 2), so (b+2k−1)2 = b2+2kb+22k−2 = a+2k(b+ c)+22k−2.
But b and c are odd, so 2k(b+c) ≡ 0 (mod 2k+1). Then we are done, provided that 2k−2 󰃍 k+1,
which is indeed true for k 󰃍 3. □
Corollary: N ∈ N is properly represented by x2 + xy + 2y2 if and only if for every prime p | N ,
we do not have p ≡ 3, 5, or 6 modulo 7, and we do not have 49 | N .

We are often interested in representation in general, rather than specifically proper representation.
Suppose that f(m,n) = N , with (m,n) = k. Then m = km′ and n = kn′, and f(m,n) = k2N ′,
where N ′ = f(m′, n′). In particular, N ′ is properly represented by f .

Corollary: N ∈ N is represented by x2 + xy + 2y2 if and only if every prime p | N with p ≡ 3, 5,
or 6 modulo 7 is such that the highest power pk dividing N has k even.

Remark 3.23 (Difficulty of Characterisation)

We know that if d < 0 is congruent to 0 or 1 modulo 4, and h(d) = 1, we can characterise
which natural numbers N ∈ N are represented by the unique reduced PDBQF of discriminant
d in terms of congruence conditions on the primes p | N . This generalises the Fermat-Euler
Theorem (3.1).

If h(d) > 1, then this method isn’t quite as precise. We can only characterise the integers
N ∈ N which are represented by some PDBQF of discriminant d, but we can’t always easily
tell which. Are we simply missing something? In fact, no. One can show that congruence
conditions generally do not suffice to characterise the primes p represented by a given PDBQF!

The form f(x, y) = x2+xy+6y2 has discriminant d = −23, and h(−23) = 3, so we can’t find
the primes represented by f easily, but we can show that any prime q ∕= 23 is represented by
f if and only if the coefficient of rq in the product

r

∞󰁜

n=1

󰀃
(1− rn)× (1− r23n)

󰀄

is equal to 2. This is a strange result, which goes far beyond the scope of this course.

The class numbers h(d) have been well-studied. For example, Siegel and Heilbronn proved in
1934 that as d → −∞, h(d) → ∞. Additionally, Baker and Stark proved in 1967 that the only
discriminants d with a unique reduced form (that is, with h(d) = 1) are:

−3, −4, −7, −8, −11, −19, −43, −67, and − 163.
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4 The Distribution of Primes

At the very beginning of this course, in §??, we considered questions about the prime numbers.
In this section, we are interested in questions along the lines of “what is the probability that a
randomly selected 50-digit integer is prime?”. This is highly useful in cryptography: for example,
we may want to efficiently generate RSA numbers N = pq.

One method we have considered to find large prime numbers is to test random numbers, and see if
they are prime. This method will be more efficient the higher the density of primes in this range
is. This density is obviously given by the prime counting function:

prime density =
π(1050)− π(1049)

1050 − 1049
where π(x) = # {p | 1 󰃑 p 󰃑 x, p a prime} .

So we want to study the behaviour of the prime counting function π(x).

Theorem 4.1 (Prime Number Theorem)

π(x) ∼ x/ log x, where log = loge = ln is the natural logarithm.

Note: If f and g : (0, ∞) → (0, ∞), say f ∼ g if the limit of f(x)/g(x) is 1 as x → ∞.

One can show that x/ log x ∼ li(x), where li is the logarithmic integral as given in §??:

li(x) =

󰁝 x

2

1

log t
dt.

In fact, li is a better approximation to π(x) than x/ log x for large x. This means that the density
of the primes around x is, in the limit, around 1/ log x.

Corollary: The probability that a random 20-digit integer is prime is around 1/ log(5 × 1019),
which is around 0.02205, or just under one in 45. In fact, the true value, known by testing every
20-digit number, is around 0.0220, so the approximation is very accurate!

There are many different formulations of the Prime Number Theorem.

Theorem 4.2 (Dirichlet’s Theorem on Primes in Arithmetic Progressions)

If a ∈ Z and N ∈ N with (a,N) = 1, there are infinitely many primes p ∈ a+NZ.

This is equivalent to the Prime Number Theorem by an alternative statement, which says that:

π(a,N, x) = # {primes p 󰃑 x : p ≡ a (mod N)} ∼ 1

φ(x)
× x

log x

with φ being Euler’s totient function, and in particular that the limit

lim
x→∞

π(a,N, x)

π(x)
=

1

φ(N)
.

So the primes are uniformly distributed among the possible classes in (Z/NZ)×.

Unfortunately, we will not be able to prove the Prime Number Theorem or Dirichlet’s Theorem,
as they require a lot of technical work beyond the scope of this course. However, we will discuss
the Riemann zeta function ζ(s), which is used in the proof of the Prime Number Theorem, and we
will give a proof of Chebyshev’s theorem, which states that there are 0 < c1 󰃑 c2 with

c1x/ log x 󰃑 π(x) 󰃑 c2x/ log x for all x 󰃍 2.
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Proposition 4.3 (First Prime Counting Bound)

If x ∈ Z with x 󰃑 2, then π(x) 󰃍 log x/2 log 2.

Proof: We are going to think of x as being the number of integers between 1 and x, so that we
have [x] = # {1, 2, . . . , x}, and consider an alternate way of counting this set. Let p1, . . . , pr be
the primes 󰃑 x, so that π(x) = r. Any 1 󰃑 N 󰃑 x can be written uniquely in the form:

N = pa1
1 × pa2

1 × · · ·× par
r ×M2

where ai ∈ {0, 1}, and M2 󰃑 N 󰃑 x, so in particular M 󰃑 √
x. But now we can count the elements

in [x] quite easily: there are two choices for each pi, and at most
√
x choices for M . Thus:

x 󰃑 2r
√
x =⇒ 2π(x) 󰃍

√
x

Taking logarithms on both sides yields π(x) 󰃍 log
√
x/ log 2, proving the result. □

Proposition 4.4 (Prime Sum Diverges)

The infinite sum and infinite product over all primes:

󰁛

p a prime

1/p and
󰁜

p a prime

󰀕
1− 1

p

󰀖−1

both diverge. That is, the sequence of partial sums and products diverge.

Proof: We first show that the two divergences are equivalent by using the Taylor series expansion:

− log(1− x) =

∞󰁛

k=1

xk

k
(which is absolutely convergent for |x| < 1)

We then take the logarithm of the (finite truncation of) the product, which is:

log
󰁜

p󰃑x a prime

󰀕
1− 1

p

󰀖−1

=
󰁛

p󰃑x a prime

− log(1− 1/p) =
󰁛

p󰃑x a prime, k󰃍1

p−k/k

This sum, if we take k 󰃍 2 instead of k 󰃍 1, is bounded as x → ∞. But the sum can in fact be
split into the sum with k 󰃍 2 and the sum with k = 1, and the sum when k = 1 is specifically the
sum of p−1/1 = 1/p over all primes p. This is the sum we want to show diverges!

First, we prove that the sum for k 󰃍 2 really is bounded, using:

󰁛

p󰃑x a prime, k󰃍2

p−k/k 󰃑
󰁛

p󰃑x a prime, k󰃍2

p−k 󰃑
󰁛

p󰃑x a prime

1

p2
× 1

1− 1/p
󰃑

󰁛

p󰃑x a prime

1

p(p− 1)

But this sum is bounded by the same sum but with any number n 󰃍 2 rather than specifically a
prime p, and this is bounded by the sum of 1/n2 plus some constant for n = 2. This is bounded
by π2/6, and so the original sum is finite, as we require.

Now, we prove that the infinite product diverges. Let p1, . . . , pr be the primes less than or equal
to x, so that we consider the truncated product. Then we see that:

󰁜

p󰃑x a prime

(1− 1/p)−1 =
󰁜

p󰃑x a prime

󰁛

k∈N
p−k =

󰁛

k1,...,kr󰃍0

(pk1
1 × pk2

2 × · · ·× pkr
r )−1.

But any integer N 󰃑 x is a product of primes below x, so this is at least the harmonic series! We
know that this diverges, so in fact the original product must diverge too. □



29 · Number Theory Avish Kumar

4.1 The Riemann Zeta Function

The Riemann Hypothesis is perhaps the most famous unsolved problem in mathematics: it is one
of the seven Millennium Prize Problems, and so comes with a million-dollar prize from the Clay
Mathematics Institute. This problem considers the behaviour of the Riemann Zeta function, which
is intimately connected to the distribution of primes.

Definition 4.5 (Riemann Zeta Function)

The Riemann Zeta function is the function ζ : C → C given by:

ζ(s) =

∞󰁛

n=1

n−s.

This function was first studied by Euler for s ∈ R, and then later by Bernhard Riemann, who in
1859 extended the study of ζ to C.

Note: From now on, for s ∈ C, we typically write s = σ + it for σ, t ∈ R.

Proposition 4.6 (Riemann Convergence)

Let s ∈ C have real part Re(s) > 1. Then the series defining ζ(s) converges absolutely.

Proof: We can simply evaluate the sum for s = σ + it with σ > 1:

∞󰁛

n=1

󰀏󰀏n−s
󰀏󰀏 =

∞󰁛

n=1

| exp(−σ log n) · exp(−it log n)󰁿 󰁾󰁽 󰂀
magnitude 1

| =
∞󰁛

n=1

exp(−σ log n) =

∞󰁛

n=1

n−σ.

Here, all the summands are positive real numbers, and we know that this series converges absolutely
if and only if σ > 1. Thus the original series for ζ(s) does too. □
Corollary: In fact, we have proved something even stronger! The same argument shows that ζ(s)
converges uniformly within any half-plane in C of the form {Re(z) 󰃍 1 + δ : z ∈ C}, where δ > 0.
Moreover, the uniform limit of holomorphic functions is itself holomorphic, so in fact ζ(s) must be
holomorphic on {s ∈ C : Re(s) > 1}.

Proposition 4.7 (Euler Product)

Let s ∈ C have real part σ > 1. Then:

ζ(s) =
󰁜

p prime

󰀃
1− p−s

󰀄−1
.

Moreover, this product is not equal to 0.

Proof: Formally, we can expand this infinite product as an infinite series:
󰁜

p prime

󰀃
1− p−s

󰀄−1
=

󰁜

p prime

󰀃
1 + p−s + p−2s + p−3s + . . .

󰀄

We can regroup the terms in this product to be over selections of r distinct primes:

󰁛

r󰃍0

󰁛

p1<···<pr primes

󰁛

k1,...,kr󰃍1

󰀓
pk1
1 × · · ·× pkr

r

󰀔
=

∞󰁛

n=1

n−s,

where the last inequality follows by the fact that each integer can be represented exactly once as
the product of distinct primes raised to non-zero powers.
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Unfortunately, this result does not itself immediately prove the proposition, as the product might
not necessarily converge. We must argue slightly more rigorously. Take X > 2 and consider the
primes p1, . . . , pr which are at most X: indeed, r = π(X). Then:

r󰁜

i=1

󰀃
1− p−s

i

󰀄−1
=

r󰁜

i=1

󰀃
1 + p−s

i + p−2s
i + . . .

󰀄
=

󰁛

n∈SX

n−s,

where SX is the set of numbers whose prime factors are all at most X. But the difference between
this partial product and ζ(s) is at most the sum over the numbers not in SX :

DX =

󰀏󰀏󰀏󰀏󰀏󰀏
ζ(s)−

󰁜

p󰃑X

(1− p−s)−1

󰀏󰀏󰀏󰀏󰀏󰀏
=

󰀏󰀏󰀏󰀏󰀏ζ(s)−
󰁛

n∈SX

n−s

󰀏󰀏󰀏󰀏󰀏 󰃑
󰁛

n∈N\SX

󰀏󰀏n−s
󰀏󰀏 󰃑

󰁛

n>X

n−σ.

But the series on the right must converge to 0 as X → ∞, since the full sum converges for σ > 1.
Therefore the error term DX does too, and so in fact the Euler product is equal to ζ(s).

To show that this product does not vanish, we consider:

󰀏󰀏󰀏󰀏󰀏󰀏
ζ(s)

󰁜

p󰃑X

󰀃
1− p−s

󰀄
󰀏󰀏󰀏󰀏󰀏󰀏
=

󰀏󰀏󰀏󰀏󰀏󰀏

󰁜

p>X

󰀃
1− p−s

󰀄−1

󰀏󰀏󰀏󰀏󰀏󰀏
=

󰀏󰀏󰀏󰀏󰀏1 +
󰁛

n∈TX

n−s

󰀏󰀏󰀏󰀏󰀏 ,

where TX is the set of numbers n such that all prime factors of n are greater than X. In particular,
TX ⊆ {n > X : n ∈ N}, so this sum is bounded by the sum with n > X.

For sufficiently large X, as the tail sum converges to 0, we must have:

󰀏󰀏󰀏󰀏󰀏󰀏
ζ(s)

󰁜

p󰃑X

󰀃
1− p−s

󰀄
󰀏󰀏󰀏󰀏󰀏󰀏
󰃍 1−

󰁛

n>X

n−s > 0

which of course can only happen if ζ(s) ∕= 0, as desired. □

Remark 4.8 (Properties of ζ)

We proved earlier that ζ(s) is holomorphic and does not vanish in the half-plane defined by
{Re(s) > 1 : s ∈ C}. In fact, it has a meromorphic continuation to C, with a unique simple
pole at s = 1.

There is also a functional equation relating ζ(s) and ζ(1−s). First, recall the Gamma function,
which for s ∈ C with Re(s) = σ > 0 is given by

Γ(s) =

󰁝 ∞

0

e−t ts−1 dt.

In fact, this function also has a meromorphic continuation to all of C, and we usually consider
this continuation to be Γ. This does not vanish, and has simple poles only at the non-positive
integers {0, −1, −2, . . .}.

We define the completed ζ function to be ξ(s) = π−s/2 × Γ(s/2) × ζ(s). As the product of
meromorphic functions, this ξ is also mermorphic, with simple poles only at 0 and 1. Most
importantly, it satisfies the functional equation ξ(s) = ξ(1 − s), which can be turned into a
functional equation for ζ if desired.

Now, ζ and Γ are both non-vanishing when σ > 1, so ξ is too. Also, the functional equation
yields that ξ is non-vanishing for σ < 0, except when Γ(s/2) has a pole, at the negative even
integers! At these points, ζ(s) must be zero: these are called the trivial zeros.
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Note: For σ > 1, there are no zeros, and for σ < 0, there are only the trivial zeros. The strip in
the middle {0 󰃑 Re(s) 󰃑 1 : s ∈ C} is called the critical strip. There is a close relationship between
the zeros of ζ in the critical strip, and the behaviour of π(X).

Proposition 4.9 (Riemann Hypothesis)

If s ∈ C is a non-trivial zero of ζ(s), then Re(s) = 1/2.

Proof: Obvious. (Just kidding: this is unproven and merely conjectured, with a million dollars
and a life of fame on the table for anyone who can prove or disprove it!) □
Note: In fact, almost all mathematicians strongly believe that this conjecture is true. The first
ten billion (1013) zeros have been checked, sorted by the magnitude of their imaginary part, and
all of them lie on the line Re(s) = 1/2.

4.2 Dirichlet Series

We now introduce a new and useful class of functions, and a way to combine two of them.

Definition 4.10 (Dirichlet Series)

A Dirichlet series is a formal power series of the form

󰁛

n=1

an · n−s

where (an)
∞
n=1 is a sequence of complex numbers.

Note: A Dirichlet series which sets an = 1 for all n clearly yields the Riemann Zeta function.

If we do not restrict the sequence (an), then really a Dirichlet series is nothing more than a formal
expression. However, if we restrict |an| to grow at most as fast as nα for some fixed α, then indeed
the corresponding series converges in some half-plane.

Suppose we have two functions f and g : N → C. We can think of these functions as being complex
sequences (fn) and (gn), where fn = f(n) and gn = g(n). But then we can write:

󰀣 ∞󰁛

n=1

fn · n−s

󰀤󰀣 ∞󰁛

m=1

gm ·m−s

󰀤
=

∞󰁛

n,m=1

f(n) · g(m) · (nm)−s

Now, we count up how many times each natural number r appears on the right: indeed, it appears
once for each divisor d | n. We can therefore write this Dirichlet product as:

∞󰁛

n=1

h(n) · n−s where h(n) =
󰁛

d|n

f(d) · g(n/d).

Definition 4.11 (Dirichlet Convolution)

For functions f and g : N → C, we define the Dirichlet convolution f ∗ g to be the expression
we manipulated above.

We define σ(n) = (id ∗ 1)(n), where id is the identity map n 󰀁→ n and 1 is the constant map
n 󰀁→ 1. Considering the above expression, this is the sum over divisors d | n of d: that is, the
sum of the divisors of n.
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Proposition 4.12 (Dirichlet Convolution Properties)

For functions f , g, and h : N → C, we have:

1. Commutativity: (f ∗ g) = (g ∗ f).

2. Associativity: (f ∗ g) ∗ h = f ∗ (g ∗ h).

3. Preservation of multiplicativity: if f and g are multiplicative, so is (f ∗ g). Recall the
definition of multiplicativity of a function from 1.16.

Proof: (1) Firstly, we may evaluate the definition directly:

(f ∗ g)(n) =
󰁛

d|n

f(d) · g(n/d) =
󰁛

ab=n

f(a) · g(b) =
󰁛

d|n

f(n/d) · g(d) = (g ∗ f)(n).

(2) A similar calculation yields associativity:

((f ∗ g) ∗ h)(n) =
󰁛

d|n

(f ∗ g)(d) · h(n/d) =
󰁛

d|n

󰁛

e|d

f(e) · g(d/e) · h(n/d) =
󰁛

abc=n

f(a) · g(b) · h(c).

which is entirely symmetric in f , g, and h.

(3) Now, suppose that f and g are multiplicative, and that (m,n) = 1. Then:

(f ∗ g)(mn) =
󰁛

d|mn

f(d) · g(mn/d) =
󰁛

d|m

󰁛

e|n

f(de) · g(mn/de).

This follows by each factor d | mn being uniquely representable as some factor of m multiplied by
a factor of n, as (m,n) = 1. But then (d, e) = 1, and we can use the multiplicativity of f and g:

(f ∗ g)(mn) =
󰁛

d|m

󰁛

e|n

f(d) · g(m/d) · f(e) · g(n/e) = (f ∗ g)(m) · (f ∗ g)(n).

This proves that (f ∗ g) is multiplicative, as desired. □

Definition 4.13 (Möbius Function)

The Möbius function µ : N → C is defined by:

µ(n) =

󰀫
(−1)k if n = p1 × · · ·× pk, where these are k distinct primes

0 otherwise, that is if m2 | n for some m.

In particular, µ(1) = 1, since 1 is the empty product of 0 primes.

Proposition 4.14 (Multiplicativity)

The Möbius function µ is multiplicative.

Proof: Consider coprime m and n.

If either of µ(m) and µ(n) are zero, then one of m and n is not square-free, and so their product
is not square-free either. This means µ(mn) = 0 = µ(m) · µ(n) as required.

However, if both m and n are square-free, then m = p1 × · · · × pk for some list of k primes, and
likewise n = q1 × · · ·× qℓ for some list of ℓ primes. These lists must be disjoint, as (m,n) = 1. But
then their product mn is the product of k + ℓ distinct primes. This also satisfies multiplicativity,
as µ(mn) = (−1)k+ℓ = (−1)k · (−1)ℓ = µ(m) · µ(n). □
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Proposition 4.15 (Convolution Identity)

Consider a function f : N → C, and let 1 : N → C be the map n 󰀁→ 1. Define a new function
δ : N → C by δ(n) = 1 if n = 1 and δ(n) = 0 otherwise.

Then δ is the identity for Dirichlet convolution: (f ∗ δ) = f . Moreover, δ can be broken down
further: in fact, µ · 1 = δ.

Proof: We can see the identity property easily by expanding:

(f ∗ δ)(n) =
󰁛

d|n

f(d) · δ(n/d) = f(n).

This is because the only non-zero term is when d = n, as otherwise n/d ∕= 1 and so δ(n/d) = 0.

Now, since µ is multiplicative (Proposition 4.14), and multiplicativity is preserved under Dirichlet
convolution (Proposition 4.12), and 1 is multiplicative (since 1 · 1 = 1), (µ · 1) is multiplicative.

Moreover, δ is clearly multiplicative. So to show that (µ ·1) = δ, we need only show equality when
n is a prime power pk, including 1 (for k = 0).

It is easy to check that (µ ∗ 1)(1) = µ(1) = 1 = δ(1), as the only divisor of 1 is 1. For non-zero
powers k, we find that:

(µ ∗ 1)(pk) =
󰁛

d|pk

µ(d) · 1(pk/d) =
k󰁛

i=0

µ(pi) = µ(1) + µ(p) + µ(p2) + · · ·+ µ(pk).

But clearly µ(1) = 1, µ(p) = −1, and µ(pk) = 0 for k > 1, by the definition of the function. This
means that (µ ∗ 1)(pk) = 1− 1 + 0 = 0 = δ(pk) for prime powers pk with k > 0. □

Theorem 4.16 (Möbius Inversion Formula)

Suppose f and g : N → C is such that for all n ∈ N, we have:

f(n) =
󰁛

d|n

g(d).

Then in fact we have g = (µ ∗ f).

Proof: We have f = (g ∗ 1). Thus µ ∗ f = µ ∗ g ∗ 1 = g ∗ µ ∗ 1 = g ∗ δ = g. □

Definition 4.17 (Chebyshev and von Mangoldt Functions)

The von Mangoldt function Λ : N → C is defined by:

Λ(n) =

󰀫
log(p) if n = pk for some prime p with k 󰃍 1

0 otherwise

The Chebyshev ψ-function ψ : N → C is defined by:

ψ(X) =
󰁛

1󰃑n󰃑X

Λ(n).

Note: ψ is similar to the prime counting function π, but counts primes with “weight” log(p) as
opposed to weight 1. In fact, one can show easily that ψ(X) ∼ π(X) log(X), so it is sufficient to
show that ψ(X) ∼ X to prove the Prime Number Theorem (4.1).
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Theorem 4.18 (Zeta-Lambda Relation)

If s ∈ C has real part σ > 1, then:

−ζ ′(s)

ζ(s)
=

∞󰁛

n=1

Λ(n) · n−s.

Proof: We have the Euler product (Proposition 4.7), which gives us the relation:

ζ(s) =
󰁜

p prime

󰀃
1− p−s

󰀄−1
.

The expression −ζ ′(s)/ζ(s) is the logarithmic derivative of ζ(s). We know that − log(1− z) has a
Taylor series in the open unit disk {|z| < 1 : z ∈ C}, given by:

− log(1− z) =

∞󰁛

k=1

zk

k
.

It follows that some branch of log(ζ(s)) is given in the usual half-plane by:

log(ζ(s)) = −
󰁛

p prime

log(1− p−s) = −
󰁛

p prime

∞󰁛

k=1

p−ks/k.

Taking the derivative of this yields:

− d

ds
log ζ(s) = −ζ ′(s)

ζ(s)
=

d

ds

󰁛

p prime

∞󰁛

k=1

−p−ks/k =
󰁛

p prime

∞󰁛

k=1

k log(p) · p−ks/k =

∞󰁛

n=1

Λ(n) · n−s,

exactly as required. The interchange of differentiation and summation is justified by the fact that
we have a locally uniformly convergent sum of holomorphic functions. □
This result implies the Prime Number Theorem (4.1). One may consider a contour integral of
−(ζ ′(s)/ζ(s))× (Xs/s), which gives a formula for ψ:

ψ(X) = X − ζ ′(0)

ζ(0)
−

󰁛

ρ∈Z

Xρ

ρ
where Z is the set of zeros of ζ(s).

4.3 Bertrand’s Postulate

Proposition 4.19 (Legendre’s Formula)

Suppose X > 2, and let P be the product of all primes which are at most
√
X. Then:

π(X)− π(
√
X) + 1 = # {1 󰃑 n 󰃑 X : (n, P ) = 1} =

󰁛

d|P

µ(d)× ⌊X/d⌋ .

Proof: If 1 󰃑 n 󰃑 X, then either n is prime, or n = 1, or there is a non-trivial factorisation n = ab
with a, b > 1, where either a or b are at most

√
X (otherwise their product is greater than X).

So if n ∕= 1 is not prime, then there is some prime p with p | N and p 󰃑
√
X. Thus:

{1 󰃑 n 󰃑 x : (n, P ) = 1} = {1 󰃑 n 󰃑 X : if p 󰃑
√
X is prime, then p ∤ n}

= {
√
X < p 󰃑 X : p is a prime} ∪ {1}

and by definition, the right hand side has size π(X)− π(
√
X) + 1.
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The second equality is proved using inclusion-exclusion. Define Ad = # {1 󰃑 n 󰃑 X : d | N} for
d | P , and write p1, . . . , pr for those primes. Then the set we have studied is:

{1 󰃑 n 󰃑 X : (n, P ) = 1} = A1 \
󰀣

r󰁞

i=1

Api

󰀤
.

The size of this set is therefore equal to:

⌊X⌋+
r󰁛

i=1

󰁛

j1<···<ji

(−1)i ·
󰀏󰀏Apj1

∩ · · · ∩Apji

󰀏󰀏

The size of each of these intersections is the number of multiples of the product of the indices of
the sets which are at most X. Writing d for this product, we get ⌊X/d⌋. The (−1)i counts the
number of primes in the prime factorisation of d in the same way the Möbius function does.

Writing the double sum as a single sum therefore yields

# {1 󰃑 n 󰃑 X : (n, P ) = 1} =
󰁛

d|P

µ(d)× ⌊X/d⌋ ,

exactly as required. □

Definition 4.20 (p-adic Valuation)

Let N ∈ N and let p be a prime. Then the p-adic valuation of N , written vp(N), is equal to
the exponent of the largest power of p which divides N . Equivalently, it is the unique integer
v where N = pvN0, where (N0, p) = 1.

This valuation is zero if and only if p ∤ N , and positive otherwise.

Corollary: This behaves much like the logarithm, in that vp(NM) = vp(N)× vp(M).

We now prove some properties of this valuation as it relates to binomial coefficients. This will be
useful in the proof of Chebyshev’s theorem.

Proposition 4.21 (Valuation Bound for Binomial Coefficients)

Let n ∈ N and define N = (2n)!÷ (n!)2, which is equal to 2n choose n. Then:

1. 22n/2n 󰃑 N < 22n.

2. If p is a prime with n < p 󰃑 2n, then vp(N) = 1.

3. If p is an odd prime with 2n < 3p 󰃑 3n, then vp(N) = 0.

4. If p is any prime, then pvp(N) 󰃑 2n.

Proof: (1) We use the fact that 22n = (1 + 1)2n, which can be expanded into a binomial sum of
2n+ 1 terms, one of which is N . Therefore:

22n

2n
=

1

2n

󰀣
2 +

2n−1󰁛

i=1

󰀕
2n

i

󰀖󰀤
󰃑 1

2n
(2 + (2n− 1)N) 󰃑 N <

2n󰁛

i=0

󰀕
2n

i

󰀖
= 22n.

(2) Clearly, p appears once in 2n! and zero times in n!. Therefore N divides by p, but not p2.

(3) Similarly, p appears twice in 2n! (as 2n < 3p but 2p 󰃑 2n), and once in n!, so twice in (n!)2.
Thus these appearances cancel out, and so p ∤ N , and we have vp(N) = 0 as required.
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(4) We show that if k 󰃍 1 with pk > 2n, then vp(N) < k. We have vp(N) = vp(2n!)− 2vp(n!). We
now use a formula for the p-adic valuation of a factorial, which we show below:

vp(m!) =

m󰁛

j=1

vp(j) =

m󰁛

j=1

∞󰁛

i=1

1{pi|j} =

∞󰁛

i=1

m󰁛

j=1

1{pi|j} =

∞󰁛

i=1

⌊m/pi⌋ .

Using this formula for vp(N) = vp(2n!)− 2vp(n!) yields:

vp(N) =

∞󰁛

i=1

󰀇
2n/pi

󰀈
− 2

󰀇
n/pi

󰀈
.

Since pk > 2n, the terms with i 󰃍 k all vanish, while the other terms are at most 1, since for any
real number x, ⌊2x⌋ − 2 ⌊x⌋ ∈ {0, 1}, because if x = y + α for α ∈ [0, 1), this expression is equal
to ⌊2α⌋ where 2α < 2. The largest value this sum can take is therefore k − 1.

But then this proves our result, as vp(N) < k as required. □
With this proposition proved, we are ready to prove Chebyshev’s theorem! This is a slightly weaker
claim than the Prime Number Theorem (4.1) but it is still an interesting and powerful result.

Theorem 4.22 (Chebyshev’s Theorem)

There exist positive constants c1 and c2 such that for all X > 4, we have:

c1 ×
X

logX
󰃑 π(x) 󰃑 c2 ×

X

logX
.

In fact, we can take c1 = 1
2 log(2) and c2 = 6 log(2).

Proof: (Upper bound). We will prove the statement for certain integer values of X, then use the
properties of the function X 󰀁→ X/ log(X) to fill in the gaps. We begin our proof by claiming that
for k 󰃍 1, we have π(2k) 󰃑 3

k · 2k = 3 log(2) · 2k/ log(2k).

We prove this by induction on k. For n ∈ N, define N = (2n)!÷ (n!)2, as in Proposition 4.21, so:

22n 󰃍 N 󰃍
󰁜

n<p󰃑2n

p 󰃍 nπ(2n)−π(n) =⇒ π(2n)− π(n) 󰃑 n

log n
· 2 log 2.

Suppose we know that π(2k) 󰃑 3
k · 2k. Then take n = 2k to obtain the bound:

π(2n) = π(2k+1) 󰃑 π(n) +
n

log n
· 2 log 2 =

3

k
· 2k +

2k

k log 2
· 2 log 2 =

5 · 2k
k

.

The induction step is complete for k 󰃍 5, and the earlier cases are easy to check. So in fact it must
hold for all k. We now try to extend this proof to other integers.

Now, let k be such that 2k 󰃑 X < 2k+1. We see that π(X) 󰃑 π(2k+1) 󰃑 6 log(2) · 2k/ log(2k). But:

d

dX

󰀕
X

logX

󰀖
=

log(X)− 1

log(X)2
> 0 where X > e =⇒ X

log(X)
is strictly increasing for X > 4.

So π(X) 󰃑 6 log(2) · 2k/ log(2k) 󰃑 (6 log 2) · (X/ logX), which proves our upper bound with c2. □
Proof: (Lower bound). Take n and N as before. Then we have:

22n

2n
󰃑 N =

󰁜

p󰃑2n

pvp(N) = (2n)π(2n) =⇒ π(2n) + 1 󰃍 2n log(2)

log(2n)
.
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Rearranging yields π(2n) 󰃍 log 2 · 2n/(log 2n)− 1. For X > 4, choose n with 2n 󰃑 X < 2n+2, so:

π(X) 󰃍 π(2n) 󰃍 2n

log(2n)
· log(2)− 1 =⇒ π(X) 󰃍 X − 2

log(X)
· log(2)− 1.

This is similar to the inequality we wish to prove, but not exactly. We want to find a lower bound
of the form specified in the theorem, by proving:

X − 2

log(X)
· log(2)− 1 󰃍 log(2)

2
· X

log(X)
⇐⇒ log(2)

2
· X

log(X)
− 2 log(2)

log(X)
− 1 󰃍 0.

The left hand side of this inequality is increasing for X > 4, and in fact is satisfied for X = 16,
where it is equal to 1/2.

Therefore we have proved the result for all X 󰃍 16, and we may check the remaining values
individually. We wish to show that:

π(X) 󰃍 log(2)

2
· X

log(X)
with 4 < X 󰃑 16.

The right hand side is maximised when X = 16, yielding 1
2 log(2) · 4/ log(2) = 2. However, the left

hand side is always at least 2 when X > 4, since 2 and 3 are prime! Thus we have shown the lower
bound for all X > 4, as required.

Thus the lower bound and upper bound both hold, proving Chebyshev’s theorem. □
Now, we prove another bound, this time as an auxiliary proposition in our pursuit of a new and
exciting result: Bertrand’s Postulate.

Proposition 4.23 (Prime Product Bound)

For X 󰃍 1, let P (X) be the product of all primes which are at most X. Then P 󰃑 4X .

Proof: It is enough to show this for integer values X = m, since P (X) = P (⌊X⌋) 󰃑 4⌊X⌋ 󰃑 4X .
We may check manually that P (1) = 1 󰃑 4, and P (2) = 2 󰃑 16.

We now use strong induction. Suppose m 󰃍 2, with P (k) 󰃑 4k for all k 󰃑 n. We will show that
P (m+ 1) 󰃑 4m+1, which suffices to show the proposition for all m ∈ N (and therefore all X 󰃍 1).

If m is odd, then m+ 1 󰃍 4 is even and thus not prime, so P (m) = P (m+ 1) 󰃑 4m 󰃑 4m+1.

If m = 2ℓ is even, then write:

P (m+ 1) =
󰁜

p󰃑ℓ+1

p×
󰁜

ℓ+2󰃑p󰃑2ℓ+1

p = P (ℓ+ 1)×
󰁜

ℓ+2󰃑p󰃑2ℓ+1

p.

By considering N = (2ℓ+ 1)!÷ (ℓ!× (ℓ+ 1)!), or 2ℓ+ 1 choose ℓ, we see that the product:

󰀳

󰁃
󰁜

ℓ+2󰃑p󰃑2ℓ+1

p

󰀴

󰁄 must be a factor of
(2ℓ+ 1)× (2ℓ)× · · ·× (ℓ+ 2)

ℓ× (ℓ− 1)× · · ·× 2× 1
= N.

Similarly, 22ℓ+1 = (1+ 1)2ℓ+1 󰃍 2N , as N appears twice in the binomial sum (as both the ℓth and
(ℓ+ 1)th term). We therefore have 2 · 22ℓ 󰃍 2N , so N 󰃑 4ℓ.

Combining these results yields P (m+ 1) 󰃑 P (ℓ+ 1)×N 󰃑 4ℓ+1 × 4ℓ = 4m+1 as required. □
We are now able to state and prove Bertrand’s postulate!
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Theorem 4.24 (Bertrand’s Postulate)

If n ∈ N is greater than 1, there is a prime number p with n < p < 2n.

Proof: Assume n 󰃍 3 (since n = 2 yields p = 3), and assume there is no such prime p. As usual,
we consider N = (2n)!÷ (n!)2.

By assumption, if p | N is prime, then p 󰃑 n, since any prime p greater than 2n would not divide
N , and we have no primes between n and 2n.

We now use the third part of Proposition 4.21, which yields p 󰃑 2n/3. Consider the factorisation:

N = N1 ×N2 where N1 =
󰁜

p|N : vp(N)=1

p and N2 =
󰁜

p|N : vp(N)>1

pvp(N).

Now, the first sum N1 is equal to P (2n/3) 󰃑 42n/3, with P as in Proposition 4.23. But if p2 | N ,
then by the fourth part of Proposition 4.21, we have p2 󰃑 2n, and so p 󰃑

√
2n.

The number of primes in the product defining N2 is then at most
√
2n, and each is at most 2n.

So in fact N2 󰃑 (2n)
√
2n. The first part of Proposition 4.21 then gives us the bound:

22n

2n
󰃑 N = N1 ×N2 󰃑 24n/3 × (2n)

√
2n =⇒ 22n/3 󰃑 (2n)1+

√
2n.

Taking logarithms yields 2
3n log(2) 󰃑 (1+

√
2n) log(2n). But then the left hand side grows linearly

in N , while the right hand side grows as the product of a term in N1/2 and one in log(N), which
is clearly asymptotically slower! For some value of N , we surely must reach a contradiction.

In fact, for n 󰃍 468, this is a contradiction! Thus Bertrand’s Postulate is true for all n 󰃍 468, and
we need only check values below this.

• 479 is prime, so in fact the postulate is true for all 239 󰃑 n < 468 as well.

• 239 is prime, so in fact the postulate is true for all 120 󰃑 n < 239 as well.

• 127 is prime, so in fact the postulate is true for all 64 󰃑 n < 120 as well.

• 67 is prime, so in fact the postulate is true for all 34 󰃑 n < 63 as well.

• 37 is prime, so in fact the postulate is true for all 19 󰃑 n < 34 as well.

• 23 is prime, so in fact the postulate is true for all 12 󰃑 n < 19 as well.

• 13 is prime, so in fact the postulate is true for all 7 󰃑 n < 12 as well.

• Finally, the primes 3, 5, and 7 take care of the remaining cases 2, 3, 4, 5, and 6.

Thus the proof holds for all n > 1, as required! □
Corollary: For all primes p, there is a prime q with q < p < 2q.

Note: We could instead have proved this (again for n 󰃍 468), then exhibited the prime sequence
2, 3, 5, 7, 13, 23, 43, 83, 163, 317, and 631 to prove the result for all p > 1.
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5 Continued Fractions

It is easy to express many numbers in decimal form. These are convenient especially for rational
numbers, which have either terminating or eventually periodic decimal expansions, and they are
convenient for arithmetic and comparing numbers.

Now, we look at a different way of representing real numbers: continued fractions. These do not
have the same properties. They are difficult to perform arithmetic with, but they excel at enabling
us to find good rational approximations to real numbers.

Example 5.1 (Approximating π)

One idea for finding a nice approximation to π is to truncate its decimal representation at
some point and take the rational number implied by that. For example, π ≈ 3.14159, so:

󰀏󰀏󰀏󰀏π − 314159

100000

󰀏󰀏󰀏󰀏 ≈
1

376848
< 3× 10−6.

But this is in some ways a wasteful approximation. Consider the approximation:

󰀏󰀏󰀏󰀏π − 355

113

󰀏󰀏󰀏󰀏 ≈
1

3748629
< 3× 10−7.

This uses much smaller numbers to approximate π, but is almost ten times as good! This
approximation can be found using the continued fraction decomposition of π, which the rest
of this section is devoted to investigating.

In fact, continued fractions generate the best rational approximations possible!

Definition 5.2 (Continued Fraction)

Take a sequence of real numbers a0, a1, a2, a3, . . . an with ai > 0 for all i > 0. Then we define
the continued fraction to be:

[a0, a1, a2, . . . , an] = a0 +
1

a1 +
1

a2+
1

a3+...

terminating at an. Explicitly, we define the two-term continued fraction to be:

[a0, a1] = a0 +
1

a1

and in general, use the recursive definition [a0, a1, a2, , . . . , an] = [a0, a1, . . . , an−2, [an−1, an]].

Now, we claim that we can assign any real number a continued fraction! We do so using something
called the continued fraction algorithm, which takes as input θ ∈ R, and returns as output two
sequences θ0, θ1, θ2, · · · ∈ R and a0, a1, a2, · · · ∈ Z such that:

1. for all i 󰃍 1, we have θi > 1 and ai 󰃍 1.

2. for all n 󰃍 0 where θn+1 is defined, we have θ = [a0, a1, . . . , an, θn+1].

How does the algorithm work? We prepare by setting θ0 = θ and a0 = ⌊θ0⌋. If a0 = θ0 = θ, then
θ was in fact an integer to begin with, and we may stop. Otherwise, 0 < θ0 − a0 < 1, and so we
may define the reciprocal to be θ1 = (θ0 − a0)

−1 > 1, so that θ = [a0, θ1] as required.

Now, we set a1 = ⌊θ1⌋. If a1 = θ1, then stop. Otherwise, set θ2 = (θ1−a1)
−1 > 1, so θ = [a0, a1, θ2].

The algorithm continues like this for all n (until we possibly stop).
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There are thus two possibilities. Either we stop, so that θ = [a0, a1, . . . an] for some sequence of
n+ 1 integers, or we continue forever.

Note: If we do stop, then in particular θ must be rational, as we have expressed it as some finite
continued fraction, and we can multiply through to find a single fraction.

In the other case, the sequences of θi and ai are both infinite. We write θ = [a0, a1, a2, . . . ]. In
both cases, we call this expression the continued fraction expansion (CFE) of θ.

Note: Of course, we have not yet made precise the notion of the infinite continued fraction. We
do this later on, though it is easy to show that the truncations of an infinite CFE converge.

Example 5.3 (Continued Fraction Expansion)

Take θ0 = θ = 59/13, a rational number. What is the CFE of θ?

1. We compute a0 = ⌊59/13⌋ = 4, so θ1 = (7/13)−1 = 13/7.

2. We compute a1 = ⌊13/7⌋ = 1, so θ2 = (6/7)−1 = 7/6.

3. We compute a2 = ⌊7/6⌋ = 1, so θ3 = (1/6)−1 = 6.

4. We compute a3 = ⌊6⌋ = 6 = θ3, so we stop here as we have found an integer.

Therefore we write 59/13 = [a0, a1, a2, a3] = [4, 1, 1, 6]. Alternatively, this is:

59/13 = [4, 1, 1, 6] = 4 +
1

1 + 1
1+ 1

6

.

Clearly, any θ with a finite continued fraction is rational. Here, we found the converse: we started
with some rational θ, and indeed the algorithm terminated and returned a finite continued fraction.
We might conjecture that this always happens: any finite θ causes the algorithm to terminate.

Proposition 5.4 (Rational Continued Fractions)

Let θ ∈ R. Then the continued fraction of θ is finite if and only if θ ∈ Q.

Proof: The first direction is easy: we can use the continued fraction to generate a fraction equal
to θ, which means θ must therefore be rational.

If θ ∈ Z, then θ = [a0]. Suppose θ ∈ Z and θ1 = r1/r2, where r1 > r2 > 0 are coprime integers.
We apply the Euclidean Algorithm (1.4) to r1 and r2, which generates a sequence with:

r1 = q1r2 + r3 0 < r3 < r2

r2 = q2r3 + r4 0 < r4 < r3

. . . . . .

rn = qnrn+1 + rn+2 0 < rn+2 < rn+1

rn+1 = qn+1rn+2 1 = rn+2

where the last equality is because rn+1 and rn+2 are coprime. We now claim that in fact for all i,
we have θi = ri/ri+1 (until i = n+ 1, of course). This is true for i = 1 by definition of r1 and r2.

Suppose θi = ri/ri+1. Then ri = qiri+1 + ri+2, so ri/ri+1 = θi = qi+ ri+2/ri+1, where ri+2 < ri+1

and qi is an integer. Then by construction, we have ai = qi, and so θi+1 = (ri+2/ri+1)
−1, which is

exactly what we require to prove the claim.

In particular, θn+1 = rn+1/rn+2 = qn+1 ∈ Z, so we terminate in n+ 1 steps. □
Corollary: This proof shows that the qi are in fact the terms in the continued fraction expansion,
which we wrote as the ai. In general, we call them the partial quotients of θ.
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Definition 5.5 (Convergents)

Suppose a0, a1, a2, · · · ∈ Z, with ai 󰃍 1 for all i 󰃍 1. Then define two sequences (pn) and (qn)
recursively. Define p0 = a0 and q1 = 1, and define p1 = a0a1 + 1 and q1 = a1. Then:

pn+1 = an+1pn + pn−1 qn+1 = an+1qn + qn−1 for n > 1.

Alternatively, one could take p−1 = 1 and q−1 = 0 to extend this recursion. The qn must all
be positive (since they do not use a0), and moreover (qn) must be an increasing sequence.

This definition can be written in matrix form:
󰀕
pn+1 pn
qn+1 qn

󰀖
=

󰀕
pn pn−1

qn qn−1

󰀖󰀕
an+1 1
1 0

󰀖
=

󰀕
a0 1
1 0

󰀖󰀕
a1 1
1 0

󰀖
· · ·

󰀕
an+1 1
1 0

󰀖
.

If θ ∈ R has continued fraction expansion θ = [a0, a1, a2, . . . ], then the sequence given by the
ratios (pn/qn) for n 󰃍 0 are called the convergents of θ.

Why are these useful? In fact, they are what give us good rational approximations to θ.

Proposition 5.6 (Convergents)

Suppose that we have a0, a1, a2, . . . as usual. Then pn/qn = [a0, a1, . . . an]. Moreover, for all
n 󰃍 1, we have pnqn−1 − qnpn−1 = (−1)n+1, and pn and qn are coprime.

Now suppose β ∈ R with β > 0. Then for all n 󰃍 1, we have:

βpn + pn−1

βqn + qn−1
= [a0, a1, . . . , an,β],

and this is a real number strictly between pn/qn and pn−1/qn−1.

Proof: In fact, choosing β = an+1 makes the first part follow from the equality. Similarly, we may
take determinants in the matrix equation for pn and qn:

det

󰀕
pn pn−1

qn qn−1

󰀖

󰁿 󰁾󰁽 󰂀
pnqn−1−qnpn−1

=

n󰁜

i=0

det

󰀕
ai 1
1 0

󰀖

󰁿 󰁾󰁽 󰂀
−1

= (−1)n+1.

This proves that pn and qn are coprime, by Bézout’s Identity (a corollary to Proposition 1.3). We
can also divide by qn−1qn to find the other identity. It just remains to prove the equality for all
positive β, and show that this lies in the claimed range.

We do this by induction on n, using p−1 = 1 and q−1 = 0. In the base case with n = 0, we have:

βa0 + 1

β
= a0 +

1

β
= [a0,β].

Now suppose this is true for n. We compute [a0, . . . , an, an+1,β] = [a0, . . . , an, [an+1,β]]. Define
γ = [an+1,β] = an+1 + 1/β. By induction, we have:

[a0, . . . , an, γ] =
γpn + pn−1

γqn + qn−1
=

(an+1 + 1/β)pn + pn−1

(an+1 + 1/β)qn + qn−1
=

an+1βpn + pn + pn−1

an+1βqn + qn + qn−1
=

βpn+1 + pn
βqn+1 + qn

.

It remains to show that this is between pn/qn and pn−1/qn−1. We know that the absolute difference
between these two numbers is 1/qnqn−1. We now use the fact that if x/y > x′/y′ for positive y
and y′, then x/y > (x+ x′)/(y+ y′) > x′/y′. Taking x/y and x′/y′ to be the larger and smaller of
the two convergents yields the result directly. □



42 · Number Theory Avish Kumar

Corollary: In the important special case where θ = [a0, a1, . . . ], we have θ = [a0, a1, . . . , an, θn+1].
This gives us the equation:

θ =
θn+1pn + pn−1

θn+1qn + qn−1
for all n.

Theorem 5.7 (Irrational Continued Fractions)

Let θ ∈ R \Q. Then for all n 󰃍 0, θ lies strictly between pn/qn and pn+1/qn+1, and the error
term given by |θ − pn/qn| < 1/qnqn+1. Moreover, the convergents pn/qn → θ as n → ∞.

Proof: By the above corollary (applied to θn+2), θ clearly lies between the two convergents. Since
θ is irrational, this must be strictly true, as it cannot be equal to the endpoints.

This interval has length 1/qnqn+1, and this bounds error term.

The convergence of the convergents follows straightforwardly by the fact that qn → ∞, since they
form a strictly increasing sequence of integers. □
Corollary: θ is determined entirely by its continued fraction expansion.

Corollary: Without too much more work, one can show that the map between R and the set of
integer sequences which meet the condition for a continued fraction, which sends each θ ∈ R to its
continued fraction as a sequence, is in fact a bijection.

Note: This justifies the truncation of infinite continued fractions for irrational numbers! For such
a sequence, θ is equal to the limit of the continued fractions truncated at each point.

Recall from Example 5.1 that π ≈ 355/113, and that this is a very good approximation. This is in
fact one of the convergents for π. The CFE of π is infinite, of course, but begins [3, 7, 15, 1, 292, 1].
The first few convergents are therefore:

[3] = 3, [3, 7] = 3 + 1/7 = 22/7, [3, 7, 15] = 3 + 15/106 = 333/106, [3, 7, 15, 1] = 355/113.

These are all “unusually good” approximations for π, given the small size of their denominators.
In fact, they are the best possible approximations, and we can make this notion precise!

Theorem 5.8 (Rational Approximation Theorem)

Suppose θ ∈ R \Q, and let p, q ∈ Z with q > 0. Then:

1. If q < qn+1, then |qθ − p| 󰃍 |qnθ − pn|.

2. If q 󰃑 qn, then |θ − p/q| 󰃍 |θ − pn/qn|.

That is, any fraction with a denominator which is smaller than qn cannot be a strictly better
approximation to θ than pn/qn is.

Proof: Clearly, if (1) holds, then |θ − p/q| = 1/q |qθ − p| 󰃍 1/qn |qnθ − pn| = |θ − pn/qn|.

To show (1), consider the matrix given in Definition 5.5, with determinant (−1)n. We can thus
find integers u and v with: 󰀕

pn+1 pn
qn+1 qn

󰀖󰀕
u
v

󰀖
=

󰀕
p
q

󰀖
.

This means qθ − p = u(qn+1θ − pn+1) + v(qnθ − pn). If u = 0, then v is a non-zero integer (if not,
then qθ − p = 0, which contradicts the irrationality of θ), and so |qθ − p| 󰃍 |qnθ − pn|.

Suppose u ∕= 0. As uqn+1 + vqn = q and q < qn+1, v ∕= 0 too, and also u and v must have opposite
signs. Also, qnθ− pn and qn+1θ− pn+1 have opposite signs, as θ lies between the two convergents.
Thus the two products have the same sign, so the absolute value of u(qn+1θ− pn+1) + v(qnθ− pn)
is |qθ − p| = |u| |qn+1θ − pn+1|+ |v| |qnθ − pn| 󰃍 |qnθ − pn| as required, since |v| 󰃍 1. □
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So we know that the continued fraction convergents are the best approximations of θ, in a sense.
How good are they in absolute terms?

Theorem 5.9 (Convergent Error Bound)

Suppose θ ∈ R \ Q. Then for all n 󰃍 1, at least one of the two convergents p/q = pn/qn or
pn+1/qn+1 satisfies |θ − p/q| < 1/2q2.

In fact, if p/q is a fraction with |θ − p/q| < 1/2q2, then p/q is a convergent of θ. That is, the
only fractions which are “this accurate” are those generated by the continued fraction of θ.

Proof: We know that θ− pn/qn and θ− pn+1/qn+1 have opposite signs. This means that the sum
of the absolute values is in fact |pn/qn − pn+1/qn+1| = 1/qnqn+1. The AM-GM inequality yields:

|θ − pn/qn|+ |θ − pn+1/qn+1| =
󰀏󰀏󰀏󰀏
pn
qn

− pn+1

qn+1

󰀏󰀏󰀏󰀏 =
1

qnqn+1
<

1

2

󰀕
1

q2n
+

1

q2n+1

󰀖
.

But then the first part of the theorem certainly holds: if not, we would have a contradiction.

Now suppose |θ − p/q| < 1/2q2. Choose the n 󰃍 1 such that qn 󰃑 q < qn+1. Then the Rational
Approximation Theorem (5.8) gives us the inequality |qθ − p| 󰃍 |qnθ − pn|. Now, use:
󰀏󰀏󰀏󰀏
p

q
− pn

qn

󰀏󰀏󰀏󰀏 󰃑
󰀏󰀏󰀏󰀏
p

q
− θ

󰀏󰀏󰀏󰀏+
󰀏󰀏󰀏󰀏θ −

pn
qn

󰀏󰀏󰀏󰀏 =
|qθ − p|

q
+

|qnθ − pn|
qn

󰃑
󰀕
1

q
+

1

qn

󰀖
|qθ − p| <

󰀕
1

2q2
+

1

2qqn

󰀖

from the triangle inequality. Suppose that p/q ∕= pn/qn. Then |p/q − pn/qn| 󰃍 1/qqn, since this is
a rational number with denominator dividing qqn. Combining these results yields:

1

qqn
<

󰀕
1

q
+

1

qn

󰀖
· 1

2q
=⇒ 2q < qn + q.

But this is a contradiction, since we chose n such that q 󰃍 qn. This means that p/q = pn/qn, and
so any rational approximation to θ with this level of accuracy must be a convergent. □
Note: It is not the case that only one convergent is an integer! Of course [a0] = a0 is an integer,
but it is possible that [a0, a1] = a0 + 1 if a1 = 1: this happens for e, for instance. Since the CFE
of e begins [2, 1, . . . ], the convergents begin 2, 3, and so on. In fact, this is true of all numbers of
the form n+ α, where n ∈ Z and 1/2 < α < 1.

5.1 Pell’s Equation

We now apply this theory to find solutions to Pell’s Equation.

Definition 5.10 (Pell’s Equation)

For d ∈ N not a square number, Pell’s equation is X2 − dY 2 = 1.

We can use continued fractions to find solutions beyond the trivial solution (X,Y ) = (1, 0). If
(p, q) ∈ N2 is a solution, then we can complete the square to find:

(p− q
√
d)(p+ q

√
d) = p2 − dq2 = 1 =⇒ p/q −

√
d =

1

q2
· 1

p/q +
√
d
.

This is a positive number, and so p/q >
√
d. Moreover, the absolute value of their difference is less

than 1/2q2, because p/q +
√
d > 2

√
d > 2. This means that p/q is a convergent of

√
d.

We thus want to study the CFE of numbers of the form r+ s
√
d, where r, s ∈ Q and s ∕= 0. What

do these look like, and do they have any special properties? Studying numbers like this will allow
us to find solutions to Pell’s equation for d.
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Example 5.11 (CFE of
√
6)

Take θ0 = θ =
√
6, an irrational number. What is the CFE of θ?

1. We compute a0 =
󰀇√

6
󰀈
= 2, so θ1 = (

√
6− 2)−1 ≈ 2.225.

2. We compute a1 = ⌊θ1⌋ = 2, so θ2 = (0.225)−1 ≈ 4.449.

3. We compute a2 = ⌊θ2⌋ = 4, so θ3 = (0.449)−1 ≈ 2.225 = θ1.

In fact, we can see where this goes! The continued fraction algorithm will repeat from here,
since the value of each θ only depends on the previous one.

Thus θ = [2, θ1] = [2, 2, θ2] = [2, 2, 4, θ3] = [2, 2, 4, θ1] = [2, 2, 4, 2, 4, 2, 4, 2, 4, . . . ].

This is a lot like the decimal expansions of rational numbers becoming eventually periodic!

Definition 5.12 (Periodic)

Suppose (an) is a sequence of integers, all of which are positive except possibly a0. Then we
say the continued fraction [a0, a1, a2, . . . ] is essentially periodic if there are m 󰃍 0 and k 󰃍 1
such that for all n 󰃍 m, we have an = an+k.

We say that it is purely periodic if this still holds for m = 0.

For such a continued fraction, we write [a0, a1, . . . , am−1, am, am+1, am+2, . . . , am+k−1]

Theorem 5.13 (Lagrange’s Continued Fraction Theorem)

Suppose θ ∈ R \ Q. Then the CFE of θ is essentially periodic if and only if θ is a quadratic
irrational : that is, θ = r + s

√
d for rational r and s and non-square d ∈ N.

Proof: If θ ∈ R \Q, then θ is a quadratic irrational if and only if it satisfies some equation of the
form aθ2 + bθ + c, where a, b, c are integers with a ∕= 0.

Suppose we have a purely periodic CFE for θ. Then we can write:

θ = [a0, . . . , an, a0, . . . , an] = [a0, . . . , an, θ] =
pnθ + pn−1

qnθ + qn−1
.

Multiplying through by the denominator yields qnθ
2 + (qn−1 − pn)θ − pn−1 = 0, so indeed θ is a

quadratic irrational, since qn ∕= 0. If instead θ has an esentially periodic CFE, then:

θ = [a0, . . . , am−1, am, . . . , am+k−1] = [a0, . . . , am−1,σ].

But then σ is a quadratic irrational, so σ = r+s
√
d. But then θ is a finite nested fraction involving

σ, and so it is easy to rewrite it as r′ + s′
√
d.

Conversely, suppose that θ ∈ R \Q is a solution to aθ2 + bθ + c. Then f(x, y) = ax2 + bxy + cy2

is a binary quadratic form with integer coefficients, with the property that f(θ, 1) = 0. For any
n 󰃍 1, associate another binary quadratic form fn(x, y) = f(pnx+ pn−1y, qnx+ qn−1y). Now:

θ = [a0, . . . , an, θn+1] =
pnθn+1 + pn−1

qnθn+1 + qn−1
=⇒ fn(θn+1, 1) = (qnθn+1 + qn−1)

2f(θ, 1) = 0.

We now claim that there are only finitely many possibilities for fn, which means there are only
finitely many possibilities for θn+1 as n varies. By the pigeonhole principle, there is thus a repeated
θn+1 = θn+1+k, but then as in Example 5.11, the continued fraction much henceforth repeat.

Therefore if the claim is true, there is an eventually periodic continued fraction for θ, which proves
the theorem. Why is the claim true?
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Write fn(x, y) = Anx
2+Bnxy+Cny

2. Then An = fn(1, 0) = f(pn, qn), and Cn = fn(0, 1) = An−1.
Now, observe that B2

n − 4AnCn = disc fn = disc f · (pnqn−1 − pn−1qn)
2 = disc f .

Since An−1 = Cn, and Bn is determined (up to sign) by An and Cn, it suffices to show that An

can take only finitely many values as n varies, and in fact since An ∈ Z we may merely show that
it is bounded. We factor f(x, 1) = a(x− θ)(x− θ′).

Then |An| = |f(pn, qn)| = q2n |a| |θ − pn/qn| |θ′ − pn/qn|. But we know that |θ − pn/qn| is bounded
above by 1/qnqn+1, which means that we have the bound:

|An| 󰃑
qn |a|
qn+1

×
󰀏󰀏󰀏󰀏
pn
qn

− θ′
󰀏󰀏󰀏󰀏 󰃑 |a|×

󰀏󰀏󰀏󰀏
pn
qn

− θ′
󰀏󰀏󰀏󰀏 .

Since the sequence of convergents tends to θ′, the sequence of |pn/qn − θ′| tends to |θ − θ′| as n
grows. In particular, it is bounded as n varies!

But then the values An can take are bounded, and therefore finite, and therefore there are finitely
many fn, and therefore finitely many θn+1, and therefore one repeats, and therefore the pattern
repeats, and therefore θ has an essentially periodic CFE. □

Theorem 5.14 (Galois Continued Fraction Theorem)

Suppose that θ = r + s
√
d is a quadratic irrational. Then the CFE of θ is purely periodic if

and only if θ > 1 and −1/θ′ > 1, where θ′ = r−
√
d is the conjugate irrational of θ. Moreover,

these conditions are symmetric in θ and −1/θ′, so −1/θ′ will also have a continued fraction
expansion which is purely periodic. If this is the case, then:

θ = [a0, a1, . . . , an−1, an] =⇒ −1/θ′ = [an, an−1, . . . , a1, a0].

Proof: Omitted. □
We now apply these results to the problem of solving Pell’s Equation (5.10). Unfortunately, since√
d > 1, if θ =

√
d, then −1/θ′ = 1/

√
d < 1, so we cannot apply Theorem 5.13. However, we may

instead take θ = θ0 =
√
d, a0 = ⌊θ⌋, and let θ1 = (θ0 − a0)

−1 > 1. Then:

−1

θ′1
=

−1

(−
√
d− a0)−1

=
√
d+ a0 > 1.

Thus θ1 has a purely periodic CFE, by the above theorem, and so the CFE of
√
d becomes periodic

after just one step a0. For example,
√
6 = [2, 2, 4] as in Example 5.11.

Theorem 5.15 (Pell’s Theorem)

Let d ∈ N be a non-square number. Then Pell’s equation X2−dY 2 = 1 has integer solutions.

Proof: Suppose
√
d = [a0, a1, a2, . . . , an] = [a0, a1, a2, . . . , an, θ1]. Then we can write:

√
d =

pnθ1 + pn−1

qnθ1 + qn−1
=

(pn − a0pn−1) + pn−1

√
d

(qn − a0qn−1) + qn−1

√
d

Multiplying through yields dqn−1 + (qn − a0qn−1)
√
d = (pn − a0pn−1) + pn−1

√
d. Now, we can

equate the integer part and coefficients of
√
d, so dqn−1 = pn − a0pn−1 and qn − a0qn−1 = pn−1.

We can now take n to be even without loss of generality, since otherwise we can take the CFE to
have a period of 2n. Then evaluating p2n−1 − dq2n−1 using the above identity yields:

p2n−1 − dq2n−1 = pn−1(qn − a0qn−1)− qn−1(pn − a0pn−1) = pn−1qn − pnqn−1 = (−1)n = 1,

by Proposition 5.6. This means (pn−1, qn−1) is a valid integer solution to Pell’s equation. □
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Corollary: In fact, since we can force the solution to have any even multiple of the original period
and still generate a valid proof, there are infinitely many solutions to Pell’s equation!

Corollary: If d ∈ N is not square, then the set of solutions (p, q) to p2 − dq2 = ±1 are in fact the
convergents (pkn−1, qkn−1), where k is the minimal period of the CFE of

√
d.

Example 5.16 (Solving Pell’s Equation)

In Example 5.11, we found
√
6 = [2, 2, 4]. We want to use this result to find integer solutions

to Pell’s equation with d = 6, namely X2 − 6Y 2 = 1.

Here, the period is 2: we have a1 = 2 and a2 = 4. Since 2 is even, we expect to find a solution
given by n = 2, namely (p1, q1).

We can find these using p1/q1 = [2, 2] = 2+ 1
2 = 5

2 , so p1 = 5 and q1 = 2. Indeed, we see that:

52 − 6 · 22 = 25− 24 = 1

and so this is indeed a solution to Pell’s equation!

What about d = 17? In fact, the CFE is very easy to find here. Clearly, 4 <
√
17 < 5, so we

take a0 = 4. Then, θ1 = (
√
17− 4)−1 =

√
17+ 4 = 8+ (

√
17− 4), so in fact θn = θ1 for all n.

This gives us a CFE of
√
17 = [4, 8].

If we want to solve X2 − dY 2 = −1, (p0, q0) = (4, 1) should work: indeed, 16− 17 = −1. To
solve Pell’s equation, we must take the next convergent (and in fact all odd convergents).

Here, p1/q1 = [4, 8] = 4 + 1
8 = 33/8, so (p1, q1) = (33, 8). As desired, we obtain:

332 − 17 · 82 = 1089− 17 · 64 = 1089− 1088 = 1.
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6 Primality Testing and Factorisation

Suppose N is a very large natural number. Can we easily check whether N is prime? In the case
where N is not prime, can we find a non-trivial factor?

Ideally, we want algorithms to answer these questions which always return answers in polynomial
time. Unfortunately, this is not known to be possible, and in fact it is strongly suspected that it is
impossible to create such algorithms. However, we can certainly do better than näıve algorithms!

Note: In fact, the security of the RSA encryption scheme relies on the assumption that large
numbers cannot be factorised quickly: further discussion appears in II Coding and Cryptography.

6.1 Probabilistic Primality Tests

Note: Here, we usually restrict our analysis to when N is odd. If N is even, this is of course very
easy to check, and so N cannot be prime!

There are probabilistically polynomial-time algorithms to test primality of numbers. These usually
come from necessary (but not sufficient) conditions for numbers to be prime.

Example 6.1 (Fermat’s Little Theorem Test)

If p is a prime, then any 1 < a < p is coprime to p. Moreover, Fermat’s Little Theorem (1.12)
yields that ap−1 ≡ 1 (mod p).

We can show that 15 is not prime. Take a = 2, and notice that 24 = 16 ≡ 1 (mod 15), so we
have 214 ≡ (24)3 · 22 ≡ 13 · 22 ≡ 22 ≡ 4 ∕≡ 1 (mod 15), and so 15 cannot be prime!

In general, we can pick random values of a, and test (using Euclid’s Algorithm from 1.4) that
a is coprime to N . Then, we can compute aN−1 (mod N): if this is not congruent to 1, then
N certainly cannot be a prime number.

However, this test passing is not a sufficient condition for N to be prime! For example, we
can compute 390 ≡ 1 (mod 91), but 91 = 7× 13 is not prime.

We can generalise our description of this situation, where a composite number passes this test.

Definition 6.2 (Fermat Pseudoprime)

Let N ∈ N be an odd composite number, and let b ∈ Z be coprime to N . Then we say that
N is a Fermat pseudoprime to the base b if bN−1 ≡ 1 (mod N).

In some sense, N “looks like” a prime number, at least with regard to this test.

Proposition 6.3 (Fermat Pseudoprimes)

If N ∈ N is an odd composite number, then:

(a) If (b,N) = 1, then whether or not N is a Fermat pseudoprime to the base b depends
only on the reduction of b modulo N : that is, the image of b in Z/NZ.

(b) The subset B ⊆ (Z/NZ)× of bases b to which N is a Fermat pseudoprime is a subgroup.

(c) If there exists a b0 ∈ (Z/NZ)× such that N is not a Fermat pseudoprime to the base b0
(a witness to N being composite), then at least half the bases have this property.

Proof: (a) This is obvious, since bN−1 (mod N) only depends on b (mod N).
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(b) We need to show that 1 ∈ B, and that B is closed under multiplication. But these are both
easy: 1N−1 ≡ 1 (mod N), and if this is true for b and c, then:

bN−1 ≡ cN−1 ≡ 1 (mod N) =⇒ (bc)N−1 ≡ bN−1 · cN−1 ≡ 1 · 1 ≡ 1 (mod N).

Thus we have identity and closure under multiplication, so B is indeed a subgroup.

(c) Write G = (Z/NZ)×. Then by Lagrange’s Theorem from IA Group Theory, |B| is a factor of
|G|. But if there is such a b0, then B is a non-trivial subgroup and B ∕= G. This means that we
must have |B| 󰃑 1

2 |G|, and so at least half the elements of G are not in B.

Equivalently, at least half the bases are witnesses to N being composite, as required. □
Why is this last property useful? Well, we want to find a primality test for N , and we have shown
that Fermat’s Little Theorem (as a necessary condition for primality) gives us an easy way to show
that N is composite (by finding a witness). We have thus shown that if there is such a witness, in
fact at least half the possible numbers we could have tried are witnesses!

The upshot of this is that we can keep trying numbers at random: if there is such a witness, the
probability we will not find one within k attempts is at most 1/2k.

Note: We might conjecture that there is always at least one witness, and so we can always quickly
find them. Unfortunately, this is not true: there are composite numbers N with B = G, so that
N is a Fermat pseudoprime to any base!

Definition 6.4 (Carmichael Number)

We call an odd composite integer N a Carmichael number if it is a Fermat pseudoprime to
any base b ∈ (Z/NZ)×. The smallest such number is 561 = 3× 11× 17.

Note: Robert Daniel Carmichael described the existence of these numbers in 1910, and found the
first fifteen of them. He also conjectured that there are infinitely many Carmichael numbers, but
this was not proved until the 1990s.

Let’s consider another type of pseudoprime.

Definition 6.5 (Euler Pseudoprime)

Let N ∈ N be an odd composite number, and let b ∈ Z be coprime to N . Then we say that
N is an Euler pseudoprime to the base b if:

b(N−1)/2 ≡
󰀕

b

N

󰀖
(mod N)

where the right hand side is the Jacobi symbol (2.13).

Corollary: Since (b,N) = 1, neither of the sides is zero. We can thus square both sides to obtain
bN−1 ≡ (±1)2 ≡ 1 (mod N), so any Euler pseudoprime is also a Fermat pseudoprime.

Corollary: For the same reasons, the properties of Fermat pseudoprimes in Proposition 6.3 still
hold. This only depends on b modulo N , the set of such bases forms a subgroup of (Z/NZ)×, and
if not every base works, then in fact at most half the bases work. The second of these is because
the Jacobi symbol is multiplicative, which was proved in Proposition 2.14.

What is the advantage of this definition? Are there any numbers like Carmichael numbers for this
new definition of a pseudoprime? In fact, there aren’t! This allows us to test for counterexamples
at random a lot more efficiently, since at least one witness exists (and therefore at least half of the
possible bases are witnesses).
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Proposition 6.6 (Euler Pseudoprime Effectiveness)

Let N be odd and composite. Then there exists some b0 ∈ (Z/NZ)× such that N is not an
Euler pseudoprime to the base b0.

Proof: We split this proof into two cases. Firstly, suppose N is square-free, and write N = pM
such that p 󰃍 3 is prime and p ∤ M . There exists some u such that the Jacobi symbol of u on p is
−1. The Chinese Remainder Theorem (1.14) allows us to choose some b ∈ Z with b ≡ u (mod p)
and b ≡ 1 (mod M). We claim that b is our witness.

The Jacobi symbol of b on N is:

󰀕
b

N

󰀖
=

󰀕
b

p

󰀖
·
󰀕

b

M

󰀖
=

󰀕
u

p

󰀖
·
󰀕

1

M

󰀖
= −1 · 1 = −1.

Suppose now that b was not a witness, and so N were an Euler pseudoprime to the base b. Then
we would have b(N−1)/2 ≡ −1 (mod N). But then this congruence would also hold modulo M ,
and we know that b ≡ 1 (mod M) by construction, which is obviously a contradiction as M ∕= 2.
Thus this b is a witness, which completes the proof in the first case.

If N is not square-free, take a prime p such that p2 | N , and write N = pkM for some k 󰃍 2 and
p ∤ N . Again using the Chinese Remainder Theorem, choose a b ∈ Z with b ≡ 1 + p (mod pk) and
b ≡ 1 (mod M). Then we again claim that this b is our witness, since working modulo p2 yields:

b(N−1)/2 ≡ (1 + p)(N−1)/2 ≡ 1 +
N − 1

2
· p+K · p2 ≡ 1 +

N − 1

2
· p ∕≡ ±1 ≡

󰀕
b

N

󰀖
(mod p2).

This means that N cannot be an Euler pseudoprime to the base b, completing the proof. □
Corollary: Since there is some such witness, N must be an Euler pseudoprime to at least half the
bases in (Z/NZ)×. In fact, there are strictly fewer than N elements in this group, and so in fact
at least half of the numbers in {1 . . . N} are either not coprime to N (and therefore witnesses to
N being composite) or are witnesses to N being composite by this criterion.

This allows us to construct an actually effective primality test!

Definition 6.7 (Solovay-Strassen Primality Test)

Given an odd integer N > 1 which may or may not be prime as input, the Solovay-Strassen
primality test runs the following procedure:

1. Choose 1 < b < N at random.

2. Compute d = (b,N) using Euclid’s Algorithm (1.4). If d > 1, then obviously d | N , and
so N is not prime. Return composite as output. Otherwise, progress to Step 3.

3. Compute b(N−1)/2 modulo N and the Jacobi symbol of b on N , and check whether they
are equal. If not, then N cannot be prime: again, return composite as output.

4. If they are congruent, then N still might be composite, but you have obtained some
weak evidence that this is not true (as you would probably have returned composite at
one of the earlier stages). Return to Step 1, choosing another b at random.

Of course, this is really a compositionality test, rather than a primality test. But if N really
is composite, the probability of reaching Step 4 for the kth time is strictly less than 1/2k.

We can set some number of rounds k as our stopping point, and eventually after that number
of independent tests, return probably prime as output.
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Remark 6.8 (Bayesian Evidence)

It is true to say that if N really is composite, the probability of being fooled by the test
(seeing a false positive) k times in a row is strictly less than 1/2k.

Importantly, it is not true to say that if k rounds of this test pass, then the probability of N
being composite is less than 1/2k.

In Bayesian terms, the prior probability of N being prime starts low. By the Prime Number
Theorem (4.1), we can quantify this prior:

P[N is prime] can be thought of as π′(N) where π(N) ∼ N/ logN.

=
d

dx

x

log x
=

log x− 1

(log x)2

󰀏󰀏󰀏󰀏
N

≈ 1

logN
.

Then, we double this to correct for the fact that N is odd, and all even numbers apart from
2 are composite. This gives us a prior of P[N is prime] ≈ 2/ logN .

Every time we run the Solovay-Strassen test and do not find a witness, we obtain at least one
bit of evidence that N is prime. Thus our posterior probability that N is prime is around:

P[N is prime | passes k tests] = 1−
1− 2

logN

1− 2
logN + 2k+1

logN

=
2k+1

logN − 2 + 2k+1

To believe that N is prime with 1−ε probability requires kε(N) tests: a function which grows
approximately as log log(N) asympotically: this is extremely slow!

In fact, we can be 99.9% sure that a randomly chosen number around 10200 is prime after
running only 18 rounds of the Solovay-Strassen test!

How do we actually run this test? More importantly, is it even possible to compute both sides of
this congruence easily? We will use the technique of repeated squaring to compute bm (mod N):

1. Write m =
󰁓ℓ

i=0 mi2
i, where mi ∈ {0, 1} are the binary digits of m, and ℓ 󰃑 ⌈log2 N⌉.

2. Compute b, b2, b4 = (b2)2, b8 = (b4)2, and so on by squaring for ℓ steps to obtain b2
ℓ

.

Given these steps, we can write:

bm =

ℓ󰁜

i=0

Bi where Bi = (b2
i

)mi =

󰀫
b2

i

mi = 1

1 otherwise

which is very easy to compute. Thus we only require 2ℓ multiplications: ℓ to compute the squares,
and another ℓ to compute the product given them. This is logarithmic, rather than linear, in m.

Of course, the Jacobi symbol can be computed using quadratic reciprocity (Theorem 2.16).

Definition 6.9 (Strong Pseudoprime)

Let N ∈ N be an odd composite number, and let b ∈ Z be coprime to N . Factor N − 1 = 2st,
where s 󰃍 1 (since N − 1 is even) and t is odd.

We say that N is a strong pseudoprime to the base b if either bt ≡ 1 or b2
rt ≡ −1 (mod N)

for some 0 󰃑 r < s.

It is not immediately obvious what the motivation for this definition is. For this, we must consider
the equation x2 ≡ 1 (mod p), which has precisely two solutions ±1 if p is an odd prime. Thus if
(a, p) = 1 and ap−1 ≡ 1 (mod p), then in fact a(p−1)/2 ≡ ±1 (mod p).
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If (p − 1)/2 is even and a(p−1)/2 ≡ 1 (mod p), then a(p−1)/4 ≡ ±1 (mod p). We continue on, at
each stage halving our exponent and checking if we have +1 or −1.

What happens now? At some stage, we either get −1, and then we have to stop, or we get all the
way down to an odd number t (which we cannot halve) with at ≡ 1 (mod p).

The notion of being a strong pseudoprime is therefore the property of behaving in the same way
as a prime when we apply this repeated “square root” operation.

Proposition 6.10 (Strong Pseudoprime Properties)

If N is a strong pseudoprime to the base b, then:

(a) N is also an Euler (and hence Fermat) pseudoprime to the base b.

(b) As usual, this only depends on the value of b modulo N .

(c) If B is the set of bases b in (Z/NZ)× to which N is a strong pseudoprime, then the size
of B is now at most a quarter of the size of (Z/NZ)×.

(d) Unlike Fermat and Euler pseudoprimes, here B is not in general a subgroup of (Z/NZ)×.

Proof: Omitted. □
We can use this to formulate a slightly better probabilistic primality test.

Definition 6.11 (Miller-Rabin Primality Test)

Given an odd composite integer N , the Miller-Rabin primality test is the algorithm:

1. Choose 1 < b < N at random.

2. Compute d = (b,N) using Euclid’s Algorithm (1.4). If d > 1, then obviously d | N , and
so N is not prime. Return composite as output. Otherwise, progress to Step 3.

3. Find integers s and t such that N − 1 = 2s · t and t is odd.

4. Find c ≡ bt (mod N). Check whether c ≡ 1 (mod N), or if c2
r ≡ −1 (mod N) for any

0 󰃑 r < s. If not, then N is certainly not prime: return composite as output.

This time, the evidence from a test which passes is twice as strong: if N is composite, there
is only at most a 1/4 chance it passes each random test!

Theorem 6.12 (Deterministic Polynomial-Time Primality Test)

Assuming that the Generalised Riemann Hypothesis. Then for any odd composite integer N ,
there exists a base 1 < b < 2(logN)2 such that N is not a strong pseudoprime to the base b.

That is, the set (Z/NZ)× \B contains at least some element less than 2(logN)2.

Proof: Omitted. □
Corollary: If this is true, there is a deterministic polynomial-time primality test, which involves
running the Miller-Rabin primality test on all the numbers up to 2(logN)2: if there is no witness
found among these numbers, then there is no witness anywhere, and so N must be prime!

Note: In fact, this is not even the best we can do. The Agrawal-Kayal-Saxena primality test from
2002 is unconditionally deterministic and runs in polynomial time, but is very hard to implement.
Discussion of this method is well beyond the scope of this course.

Note: Polynomial-time algorithms are not necessarily faster than exponential time algorithms,
only asymptotically faster. An exponential-time algorithm may be faster even up to a googolplex!
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6.2 Fast Factorisation

Suppose that N = ab is an odd composite number which is not a square. Without loss of generality,
we may take a > b > 1, in which case we may write N as:

N =

󰀕
a+ b

2

󰀖2

−
󰀕
a− b

2

󰀖2

=
1

4
×
󰀃󰀃
a2 + 2ab+ b2

󰀄
−
󰀃
a2 − 2ab+ b2

󰀄󰀄
=

1

4
× (4ab) = ab.

Conversely, if N = r2− s2, then in fact N = (r+ s)(r− s) is a factorisation of N . This observation
allows us to develop a technique for factorisation.

Definition 6.13 (Fermat Factorisation)

Suppose that N is an odd composite number which is not a square.

For each r = ⌊
√
N⌋+1, r = ⌊

√
N⌋+2, and so on, test r2−N to see if this is a perfect square.

If indeed this is equal to s2, then N = (r + s)(r − s).

Note: In fact, if this works then this will be a non-trivial factorisation of N .

Example 6.14 (Factorising 200819)

Since
√
200819 ≈ 448.128, we start with r = 448 + 1.

• 4492 − 200819 = 201601− 200819 = 782, which is not a square.

• 4502 − 200819 = 202500− 200819 = 1681 = 412, so take r = 450 and s = 41.

Indeed, (r + s)(r − s) = (450 + 41)(450− 41) = 491× 409 = 200819.

Note: Fermat factorisation yields a factorisation of N = ab in at most 1
2 (a − b) steps. However,

unfortunately in general this is no better than trying random divisors asymptotically.

Proposition 6.15 (Congruent Squares Rule)

Observe that if N = r2 − s2, then in fact r2 ≡ s2 (mod N).

Suppose that x2 ≡ y2 (mod N), but x ∕≡ ±y (mod N). Then (N, x + y) and (N, x − y) are
both non-trivial factors of N .

Proof: Firstly, (N, x− y) is a factor of N by definition. If (N, x− y) = N , then x ≡ y (mod N),
which we stipulated was not the case. If (N, x− y) = 1, then (x+ y)(x− y) ≡ 0 (mod N), and so
x+ y ≡ 0 (mod N), thus x ≡ −y (mod N), which is also false.

The same argument holds for x+ y, which completes the proof. □
How do we turn this into a way to factorise N? We want to choose many integers xi such that
x2
i ≡ ci (mod N), where ci has only small prime factors. Then, we can choose some subset of the

xi such that the product of the corresponding ci is a square, and hope that the hypothesis of the
above proposition holds so that we can find non-trivial factors for N .

Proposition 6.16 (Easy ci Finding)

Suppose that {p1, . . . , pr} are primes and that {c1, . . . , ck} is a set of non-zero integers, all of
whose prime factors lie exclusively in the set of primes.

Then, if k > r+ 1, there exists some non-empty subset I ⊆ {1, . . . , k} such that cI =
󰁔

i∈I ci
is a square number.
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Proof: We can write cI = m2 ·
󰁔

j∈S pj , where I is such a subset and SI ⊆ S = {0, . . . , r}. Here,
we use the convention that p0 = −1.

There are 2k possible subsets I, and at most 2r+1 possibilities for SI . Since k > r+1, we know by
the pigeonhole principle that there exists some pair I ∕= I ′ with SI = SI′ . Then cIcI′ is a square,
and we can write this as c(I△I′) · c(I∩I′) · c(I∩I′). But then c(I△I′) is a square! □

Definition 6.17 (Factor Base)

A factor base is a set B ∈ {−1, p1, . . . , pr} of −1 along with r primes. Fix an odd composite
integer N . Then a B-number is an integer x ∈ N such that all the prime factors of 〈x2〉 are
contained in the factor base B.

Here 〈x2〉 ≡ x2 (mod N) and −N/2 󰃑 〈x2〉 < N/2, as in Definition 2.5.

Definition 6.18 (Factor Base Factorisation)

Let N be an odd composite integer. Choose a factor base B, and generate some B-numbers
x1, . . . , xk. Find a non-empty subset I ⊆ {1, . . . , k} such that the product of the 〈x2

i 〉 = y2 is
a square. (This is not obvious: just because x2 is a square does not mean 〈x2

i 〉 is.)

Now, let x be the product of the xi. Then x2 ≡ y2 (mod N). If x ∕≡ ±y (mod N), then we
can find a non-trivial factor of N . Otherwise, go back and choose different B-numbers.

Note: Heuristically, if N has t distinct prime factors, then x2 ≡ 1 (mod N) can be split up into
t congruences, and thus there are 2t solutions modulo N . Now, x/y is a random solution to this
congruence, and we “win” unless it is ±1, which happens with probability 1/2t−1. This is quite
good: if t 󰃍 2, then we should find a factorisation quickly. Thankfully, it is easy to check that N
is not a perfect power pk in polynomial time.

How do we generate B-numbers? We consider x = ⌊
√
kN⌋ and x = ⌊

√
kN⌋+ 1 for k ∈ N. This is

because x2 should be close to kN , since 〈x2〉 will be close to zero.

Example 6.19 (Factorising 1829)

Suppose we want to factorise 1829. Our factor base will be B = {−1, 2, 3, 5, 7, 11, 13}.

We have ⌊
√
1829k⌋ = 42, 60, 74, and 85 for 1 󰃑 k 󰃑 4.

〈422〉 = −65 = −1× 5× 13 is a B-number. 󰃀
〈432〉 = +20 = 22 × 5 is a B-number. 󰃀
〈602〉 = −58 = −1× 2× 29 is not a B-number. ×

〈612〉 = +63 = 32 × 7 is a B-number. 󰃀
〈742〉 = −11 = −1× 11 is a B-number. 󰃀
〈752〉 = +138 = 2× 3× 23 is not a B-number. ×

〈852〉 = −91 = −1× 7× 13 is a B-number. 󰃀
〈862〉 = +80 = 24 × 5 is a B-number. 󰃀

By inspection, 〈422〉 × 〈432〉 × 〈612〉 × 〈852〉 = (−5× 13)(22 × 5)(32 × 7)(−7× 13), which can
be written as 22 × 32 × 52 × 72 × 132 = 27302. But then 42× 43× 61× 85 ≡ 1459 (mod N)
and 2× 3× 5× 7× 13 ≡ 901, with 14592 ≡ 1554 = 9012 (mod N).

Indeed, (1829, 1459 + 901) = 59 and (1829, 1459− 901) = 31 are non-trivial factors of 1829.
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Unfortunately, this isn’t the whole story. To decide whether 〈x2〉 is a B-number, we needed to
factorise it, which seems circular. However, thankfully this is easy: we need only try dividing by
the elements of B. This is fairly fast, so does not pose a problem.

Also, we showed that if k > r+1, then a valid choice of I must exist, using the pigeonhole principle.
Obviously, this is not a constructive proof: in practice, we find these with linear algebra over Z/2Z.

〈x2
i 〉 = m2

r󰁜

j=0

p
αi,j

j where αi,j ∈ {0, 1} , p0 = −1.

Finding I is then equivalent to finding some k-vector λ ∈ (Z/2Z)k such that λ ·α = 0 in this field.

Another way to generate B-numbers is by using continued fractions!

Proposition 6.20 (Convergent B-Numbers)

Let N be an odd non-square composite integer, and let pn/qn be a convergent of
√
N . Then󰀏󰀏p2n −Nq2n

󰀏󰀏 < 2
√
N .

Proof: We can write this using the difference of two squares as

󰀏󰀏󰀏pn/qn −
√
N
󰀏󰀏󰀏
󰀏󰀏󰀏pn/qn +

√
N
󰀏󰀏󰀏 q2n 󰃑 q2n

qnqn+1

󰀕
2
√
N +

1

qnqn+1

󰀖
=

1

qn+1

󰀕
2qn

√
N +

1

qn+1

󰀖
,

where the inequality comes from Theorem 5.7 and the triangle inequality. But since qn 󰃑 qn+1−1,
this is in fact at most:

1

qn+1

󰀕
2qn

√
N +

1

qn+1

󰀖
󰃑 qn

qn+1

󰀓
2
√
N
󰀔
+

1

q2n+1

󰃑 2
√
N

exactly as required. □
Corollary: Suppose now that 2

√
N < N/2, which is equivalent to the condition N > 16. Then in

fact
󰀏󰀏p2n −Nq2n

󰀏󰀏 < N/2, and so 〈p2n〉 = p2n −Nq2n. Thus, since 〈p2n〉 is small, it has a good chance
of being a B-number! Also, since we need only compute pn modulo N , which we can do using the
recurrence pn+1 = an+1pn + pn−1 (treated as a congruence modulo N).

Example 6.21 (Factorising 12403)

The continued fraction of
√
N =

√
12403 = [111, 2, 1, 2, 2, 7, 1, . . . ]. Take the factor base to

be the set B = {−1, 3, 13}. Then:

p1 = 111, so 〈p21〉 = −82 = −1× 2× 41. This is not a B-number. ×

p2 = 223, so 〈p22〉 = 117 = 32 × 13. This is a B-number. 󰃀
p3 = 334, so 〈p23〉 = −71 = −1× 71. This is not a B-number. ×

p4 = 891, so 〈p24〉 = 89 = 89. This is not a B-number. ×

p5 = 2116, so 〈p25〉 = −27 = −1× 33. This is a B-number. 󰃀
p6 = 3300, so 〈p26〉 = 166 = 2× 83. This is not a B-number. ×

p7 = 5416, so 〈p27〉 = −39 = −1× 3× 13. This is a B-number. 󰃀
Now, we see that 〈2232〉 × 〈21162〉 × 〈54162〉 = (33 × 13)2. Thus if x ≡ 223× 2115× 5416 and
y ≡ 33 × 13, we get 113412 ≡ 11574 ≡ 3512 (mod N).

As desired, we get the non-trivial factors (N, x+ y) = 79 and (N, x− y) = 157.
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Note: This method using continued fractions was used in 1970 to factor the 7th Fermat number
F7, which is equal to 2128 + 1 ≈ 3.40 × 1038, where 128 = 27. The first four of these are prime,
which led Fermat to conjecture that this was true for all of them, but Euler and Clausen factored
F5 and F6 in 1732 and 1855 respectively.

The current best techniques include the quadratic sieve and number field sieve, developed around
the 1990s. However, factorisation is still generally a hard problem!

In some cases, it is possible to find special prime factors of N easily. For example, some factors of
F7 were known before 1970, just not a full factorisation.

Remark 6.22 (Pollard’s p− 1 Method)

Suppose N = pN0 is an odd composite integer, where p is prime and p ∤ N0. If (a,N) = 1,
then ap−1 ≡ 1 (mod p): that is, p | ap−1 − 1.

However, there is no reason that we necessarily have ap−1 ≡ 1 (mod N0). This means we can
compute (ap−1 − 1, N), and hope it is a non-trivial factor of N . But this seems circular: we
don’t know p at the start, since the whole problem is that of factorising N .

We use Pollard’s p− 1 method. The algorithm is as follows:

1. Fix some m 󰃍 2, and compute k = lcm(1, 2, . . . ,m).

2. Choose some 1 < a < N at random, and compute d = (a,N). If we get lucky, d > 1 is
a non-trivial factor of N . Otherwise, d = 1.

3. Compute ak − 1 (mod N) quickly using repeated squaring.

4. Compute (N, ak − 1), and hope that it is a non-trivial factor of N .

Why would this work? Suppose that p | N and that p − 1 is divisible only by small primes.
This is possible even if p is very large. Suppose in particular that any prime power dividing
p− 1 is at most m. Then p− 1 | k, and so ak ≡ 1 (mod p). In particular, p | (N, ak − 1), and
so this will be a non-trivial factor of N .

Example 6.23 (Factorising 540143)

We take m = 8, and compute k = lcm(1, 2, . . . , 8) = 840. Choose a = 2, which is coprime to
N = 540143. Then 2k ≡ 2840 ≡ 2(64+32+8+1)×8 ≡ 53046 (mod N).

We compute (540143, 53046) = 421 using Euclid’s Algorithm, and indeed this is a non-trivial
factor of N = 540143. We see that this works because 421− 1 = 22 × 3× 5× 7, which is the
product of prime powers which are all at most 8.

Note: The factorisation methods discussed here (Fermat, Factor Bases, and Pollard) are currently
the best known methods available. They run in sub-exponential time, but not in polynomial time.
There is a known polynomial-time factorisation algorithm, called Shor’s algorithm, but it requires
a quantum computer to run. As of 2024, the largest number factorised in this way was 21 = 7×3.


